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Abstract W e  are adopt ing Brooks  and Wiley 's  view of evo- 
lution as an irreversible process capable  of producing in- 
creasingly greater  complexi ty  at higher organizat ional  
levels. W e  start  f rom the assumption that  the evolut ionary 
force is intrinsic in the living system, and is in real i ty a 
continuous senescence function leading gradual ly  and un- 
avoidably to death.  W e  are therefore  seeking a senescence 
function that  favors social ra ther  than soli tary agents in 
terms of longevity, without  prespecifying in detai l  the 
agent 's  life span. We show that  a senescence function rely- 
ing on negative (destructive) feedback links f rom metabo-  
lism to genet ic  p rogram conforms with these specifications. 
We also show that  senescence should affect all the regula- 
tion pa rame te r s  of the agent,  and that  the system remains 
nonmanipu lab le  and unpredic table  as far as its life span is 
concerned.  This senescence function favors the more  "cog- 
nitive" agent  models  (the ones having addi t ional  regulat ion 
loops),  and thus the emergence  of organizat ions of a higher 
o rder  that  have more  e labora te  social relations.  

Key words Aging �9 Adapt iv i ty  �9 Sociali ty - Self-regulation �9 
A u t o n o m y  - Emergence  

Introduction 

Why age? 

Artif icial  life is concerned with the study of "life as it could 
be, ins tead of life as we know it". 1 One major  research 
theme is the evolution of structures and organizations.  
Here ,  we are  adopt ing Brooks  and Wiley ' s  ~ view of evolu- 
t ion as an i rreversible  process capable  of producing increas- 
ingly greater  complexi ty at higher  organizat ional  levels: 
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"Because  we know of no natura l  hierarchical  configurations 
not  p roduced  by an i rreversible  process,  we are logically 
compel led  to accept the proposi t ion  that  the natura l  hierar-  
chy of form we see is the result  of historical  and i rreversible  
processing operat ing on discrete units" (p. 82). Our assump- 
tion is therefore that the evolutionary force is intrinsic in the 
living system, and is in reality a continuous senescence func- 
tion leading the living system irreversibly, gradually, and 
unavoidably to death. Such a senescence function may  be a 
true evolut ionary  force, or else the significant constraint  of 
evolution,  3 and may lead to the emergence  of h igher-order  
organizat ions if it favors sociality be tween individuals,  i.e., if 
the life span of  the social individual  is longer  than that  of the 
asocial one. In  this way, a mult icel lular  organizat ion will 
have a "selective advantage"  over  a unicellular  one, a soci- 
ety of mult icel lular  agents will have a selective advantage  
over  a single agent,  and so forth. Of course,  the senescence 
function should be coupled with a mechanism of de tec t ion  
and re inforcement ,  or  stabil ization, of "emergent"  proper -  
ties for h igher-order  organizat ions to appear.  In  addit ion,  
the whole process should be shown to be recursive, in the 
sense that  the senescence function will be the same across 
organizat ional  levels, while the exact  form of the emergent  
structures will vary according to the level. In what  follows, 
we will only be concerned with the first par t  of this hypoth-  
esis, i.e., in finding a senescence function that favors agent  
societies ra ther  than individual  agents; the t ransi t ion f rom 
level to level and the evolut ion of organizat ions will be 
t rea ted  in a further study. 

What  might  a senescence function look like? 

Our  first concern during the deve lopment  of a senescence 
model  is to mainta in  a degree  of similarity with biological  
reality,  but  with the aim of understanding this real i ty  ra ther  
than using it blindly. The basic mode l  should therefore  give 
rise to a senescence phe nome non  that  does not  appear  once 
the agents have reached a certain age, but  that  is ins tead a 
cont inuous process during the agent 's  life, that  leads him 
gradually and unavoidably  to death: 



" . . .  the decline in old age would be the price to pay for the 
vigor in youth. On  the one hand, the aging speed would 
increase due to factors tending to favor vigor in youth. On 
the other hand, it would decrease due to other forces 
tending to delay the deleterious effects. The equilibrium 
between those opposite forces would hence adjust the aging 
speed and the life span. (Jacob, 4 p. 93, translated by us)." 

Or, in Kanungo 's 'words  5 (p. 267) 

"senescence or aging should not be viewed as an isolated 
and independent phase in the life span of organisms, but 
should be considered together with development and adult- 
hood phases. These earlier phases may not only influence 
the organism's longevity but also the rate, duration and 
mode of its senescence." 

The senescence force (or function) should therefore be 
modeled as a developmental  force having the properties 
listed below. 

- Senescence should favor social relations in the sense that 
social agents live longer than asocial ones. 

- Senescence should be continuous and ensure the agent's 
death. 

- However,  senescence should not prespecify the agent 's 
life span; the agent should have a limited possibility to act 
in a way which will relatively extend its life. 

- Senescence should be the result of the coupling of two 
opposite forces, one of which delays while the other one 
accelerates the agent 's  death. The agent should therefore 
search for the proper  compromise between these forces 
that will allow it to live longer. 

Note that such a senescence force, relying on the coupling 
of opposite forces that do not prespecify the agents' life 
span, leads to a system not directly controllable and ma- 
nipulable, as will be shown below. 

Senescence model  

An  agent has two "behavioral" parts: its metabol&m (or its 
body) that is responsible for the "consumption" of messages 
coming from the outside (and is therefore responsible for 
the self-regulation of the agent in front of the world), and its 
genetic program, that determines and codes what the me- 
tabolism does. Dyson 6 drew the analogy between metabo- 
lism and hardware, and between genetic program and 
software, to develop his theory of a double origin of life. 
According to his view, the genetic program (or software) 
passes from generation to generation (and the agent cannot 
explicitly control or modify it during its life; it is his inert 
part). On the other hand, the metabolism (or hardware) is 
important only to a particular individual (it is therefore the 
part where learning is allowed). For  instance, all the envi- 
ronmental  and social adaptation functions are essentially 
metabolic functions, but are regulated by the agent 's ge- 
netic program. The agent 's physiology is then the mode 
of coupling between its genetic program and metabolism. 
The designer of an artificial agent works at the program 
level to try to adapt it to the specific features of the 

47 

F i g .  1. The agent model without senescence 

Fig. 2. The model of the senescent agent. In what follows, the broken 
lines" represent the senescence feedback 

implementation medium that constrain the possible forms 
of the metabolism. 

In order to find a senescence model  which meets the 
given specifications, we imagined an agent physiology such 
that the genetic program and the metabolism of the agent 
are coupled with negative feedback links of the following 
type: each time an agent metabolizes, it is because its pro- 
gram instructed it to do so, and it does so in a direction that 
makes it more  adaptive to its environment,  but every meta- 
bolic action acts in a progressively destructive manner upon 
the program, and therefore upon the future possibility of 
metabolizing. The senescence function is therefore a nega- 
tive feedback link added to the instruction of the metabo- 
lism by the agent 's program (this situation is represented 
schematically in Figs. 1 and 2). The simplest model comply- 
ing with this idea is that of unidirectional (linear) programs 
with threshold effects that determine the agent's potential 
to metabolize. The metabolic rate, which depends not only 
on the program but also on the environment in which the 
agent is situated, is responsible for the senescence rate, and 
is self-catalytic. This idea of negative self-catalysis has been 
inspired by browsing the biological theories of senescence, 7 
and more specifically by the view of senescence not as a 
single mechanism, but as a whole set of mechanisms acting 
at multiple organizational levels and probably intercon- 
nected, so that practically every existing theory is partially 
trueS: senescence has to be programmed but also not pro- 
grammed, continuous but also catastrophic at times, etc. 
More precisely, Zs.-Nagy's membrane hypothesis of aging 9 
and Kanungo 's  gene regulation theory 5 at tempt a synthesis 
of experimental data and existing theories under a common 
level-independent principle, i.e., progressive membrane de- 
terioration and progressive gene expression deterioration, 
respectively. 

As well as Dyson 's  theory, 6 the importance of metabo- 
lism is also a foundation of the theory 1~ that free-radicals 
have a deleterious effect on the D N A  of somatic cells, as 
well as on proteins and other essential molecules, and whose 
accumulation depends on the metabolic rate. For example, 
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Rusting s (p. 91) notes that  the mean  life span of various 
species is inversely propor t iona l  to their  metabol ic  rate.  
Senescence is therefore the wear o f  the program-metabolism 
connection, and this wear is unavoidable: the more the agent 
metabolizes, the more its" program deteriorates. 

Usually,  the genetic p rogram of an agent is represen ted  
as a sequence of genes, each acting as a pa rame te r  of the 
(metabol ic)  behavior  of the agent. A n  implementa t ion  of 
the senescence model  above can be  der ived in one of two 
ways: 

- ei ther  by acting directly on a gene 's  value every t ime the 
gene fires (is used in the agent 's  context  to de te rmine  its 
behavior) ;  

- or  indirect ly by acting on the gene expression mechanism 
every t ime the gene fires. 

In bo th  cases, the results are equivalent ,  and the gene values 
change in a way that  makes  their  future effect less and 
less pronounced.  The exact way the gene values change 
(directly or indirectly) depends  on the details of the particu- 
lar phenomenon  modeled.  However ,  as will be shown later,  
those gene modifications should follow some not  so simple 
rules in o rder  to conform to the specifications of the previ- 
ous section. 

In the implementa t ion  that  follows, we regard  simple 
numeric  parameters  of the agent 's  behavior  as genes, whose 
values change every t ime they are used. The  genes and their  
functions are descr ibed as they are encountered.  The con- 
cept of  gene modification in re la t ion to genetic representa-  
t ion and senescence will be discussed again la ter  in view of 
the results obta ined  below. 

Appl ica t ion  domain  

To implement  those ideas, we deve loped  a senescence 
model  for a p rob lem that is apparent ly  simple, but  suffi- 

ciently abstract  to allow for the observat ion of complex 
enough phenomena  and serve as a val idat ion basis. A popu-  
lat ion of agents is init ialized in a closed space; each agent  
has an individual  goal and a possibil i ty to "socialize." Fur-  
thermore ,  an agent may encounter  obstacles that,  as their  
name indicates,  will distract  it f rom its goals. Eventual ly ,  
the agent  will meet  its goal  and stop, i.e., it will die; the 
mult iagent  system will be dead  when all its componen t  
agents die. 

To simulate the system, the notions of space, goal, and 
obstacle  have been  instant ia ted as follows. The closed space 
is a closed 2D grid. The goal is a point  in that grid toward  
which the agent  heads, obstacles are " inert"  objects that  the 
agent destroys,  and sociali ty relies on the range of percep-  
tion of  o ther  agents (in what  follows, we will often refer  to 
this range as the  sociality factor, or simply sociality). Social- 
ity distracts the  agent from its goal  by inducing it to "lunatic 
behavior" :  the agent turns a round  itself without  moving 
and, eventually,  when a t ime-out  expires, it advances (a step 
forward)  but  in a r andom direction,  since it has been  per-  
turbed.  As  far as arbi t ra t ion be tween  those three  behaviors  
is concerned,  the destruct ion of obstacles takes pr ior i ty  over  
the social distraction, which in turn takes pr ior i ty  over  the 
heading toward  the goal; a rb i t ra t ion  is thus static. This set- 
up is summarized  in Figs. 3 and 4. 

The  view of sociality as a distract ion is based  on the 
following observat ion:  an agent  has its own goal point  that 
it tries to reach.  If it encounters  o ther  agents that  also have 
their  own goals, it is dis t racted f rom its goal  to par t ic ipate  in 
social activity, and so it achieves its goal la ter  and lives 
longer. In an engineering or  design context,  sociality as a 
distract ion would have an opera t iona l  meaning: the global  
problem,  that  of the mul t iagent  system, would be bet ter  
solved with sociali ty/distraction than without. 

W e  have implemented  and compared  three successive 
behaviora l  models.  The  first is a "react ive"  mode l  (reactive 

Fig. 3. Basic behavioral model. For 
all subsequent aging models, the 
environmental and behavioral 
parameters have been tuned in a 
40 • 40 world in a way that will 
amplify the observed phenomena, 
such as distraction. A few sporadic 
experiments with other para- 
meter settings showed that those 
phenomena did not change 
qualitatively 

# 
1 

Basic behavioral model 

Distraction. I f  there is an obstacle in the agent's position, then the agent 

destroys it. 

Social behavior. I f  there are other agents in the perception range (sociality), 

then the agent is perturbed and after a timeout it migrates elsewhere. 

Goal-direction. I f  its goal is met, then the agent stops, otherwise it heads 

toward this goal. 

There may be from 1 to 5 obstacles in the same place (this corresponds to 

obstacles o f  varying degree o f  difficulty). 

The agents  perception range (its sociality) takes a value between 1 and 5. 

The social distraction timeout takes a value between 1 and 10. 

The goal-point is randomly initialized in the grid. J 
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Individual > 
perturbation 

Social 
perturbation 

Individual 
need 

) 

Fig. 4. Abstract behavioral model, i.e., a motivational system with 
static arbitration between the three tasks of an agent. The goal is a 
point in space (in a 2-dimensional grid), obstacles are objects whose 
presence delays the agent, and distraction induces a random change of 
heading 

as far as its primary need is concerned), the second is an 
"autonomous"  model  (motivated and senescent), and the 
third is a "cognitive" (self-regulated) model; these three 
models are presented below. Senescence is continuous; it 
intervenes to the physiological level as a negative feedback 
link, and it mainly affects sociality. In fact, we will see that 
the system dies slowly owing to the decay of  the agents'  
sociality: since sociality decreases, the inter-agent relations 
degrade and the system loses its identity as a coherent  sys- 
tem; it decomposes. The sociality parameter  simultaneously 
expresses selfishness and tolerance: it expresses selfishness 
since the agent is distracted from its goal, and it expresses 
tolerance since it allows the agent to live longer than if it 
were not social. 

We will show that senescence should affect all the regu- 
lation parameters, and that the system remains nonma- 
nipulable and unpredictable as far its life-span is concerned. 
We will also show that senescence favors the more  cognitive 
agent models (the ones having additional regulation loops), 
and thus it favors the emergence of organizations of a 
higher order that have more elaborate social relations. 

As well as theoretical and simulation work, we also had 
the system observed by volunteers (mostly artificial intelli- 
gence researchers) to identify the relation between the real 
mechanism underlying the behavior of the simulated agents 
and the conclusions drawn through observation to respond 
to the question "what does the system do and why do agents 
die?" As a result, it was found that all observers would 
come to some sort of top-down conclusion, such as "the 
agents are trying to create configurations with high agent 
concentrations in some areas," while they remained unable 
to describe how the agents would act toward such a goal. 
Furthermore, they appeared systematically to ignore be- 
havioral regularities (for instance they would find a straight 

Fig. 5. Reactive model. The agent's sociality, i.e., the range of social 
perception, is negatively catalyzed 

walk pretty dumb) and underestimate the value of possible 
manipulations of the simulated system, such as adding, de- 
leting, or moving agents, etc. Overall, they would be misled 
by the complexity and diversity of  the emergent  behavior of 
the system toward elaborate, complex, and nonmechanistic 
explanations of individual agent behavior, and away from 
simple, deterministic models such as the one presented 
here. While we will not describe in detail the observation 
procedure and the results obtained, we will occasionally 
repeat some telling remark from an observer whenever this 
is useful to the discussion. 

The aging mechanism 

A "reactive" model 

The first senescence model is founded on the observation 
that if an agent 's  sociality is constant over time, the 
multiagent system may be "immortal," i.e., it may stay alive 
for ever. This may happen if two agents have neighboring 
goals and the sociality of either one of the two is sufficiently 
high, i.e., superior to the distance between the two agents'  
goals. The solution appears to be a mechanism that makes 
sociality decay gradually. The first idea was to make social- 
ity fade "naturally," i.e., for a reason intrinsic to the agent 
and independently of its activity. However,  this would lead 
to a "preprogrammed death" phenomenon,  and, as we have 
already explained, we are interested in senescence models 
where agents are mortal without the conditions and the 
context of death being preprogrammed. We have therefore 
introduced a feedback link between the effects of sociality 
(distraction) and sociality itself: every time the agent social- 
izes, i.e., every time it is distracted from its goal, its sociality 
decays by a small proport ion less than 1 (the time-out de- 
cays by the same factor). The idea of a time-out that makes 
sociality decay and that decays itself in the same way is 
consistent with the specification of senescence as a self- 
catalytic phenomenon  that is observable, but not directly 
controllable (cf. the discussion below). This first senescence 
mechanism is presented in Figs. 5 and 6. 

Observation and experimentation with this system have 
shown that it is fairly manipulable: if we move an agent 
away from its goal, it will always try to return to it, despite 
the presence of obstacles and of other agents, but also de- 
spite all these manipulation trials. Successive manipulations 
will lead to a decay of sociality close to 0, so that the agent 
will no longer be sensitive to the presence of other agents. 
However,  since the manipulations do not directly affect the 
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Fig, 6. Basic aging 
model) 

model (reactive f 
Reactive model 

Program : system o f  sociality decay (otherwise, adaptation) 

Timeout or social distraction 

Sociality .= sociality*(1-fs) & timeout : -  timeout*(1-~) 

�9 Genes :f~., timeout, sociality 

�9 Initial values :f~ c (0.05,0.15), timeout(O) E (5,10), sociality(O) ~ (1,10) 

J 

Fig. 7. Manipulability in the reactive model. The black agent's original 
trajectory (denoted by a series ofsrnall dots) is the one on the left, and 
the other two took place after manipulation, i.e., repositioning of the 
agent in a different position. The agent always returns to its initial goal. 
The obstacles are visualized as dark 

agent 's  goal, it remains manipulable  by an external  agent  
who, after observing the system, has discovered the agent 's  
goal-posi t ion (this is visualized in Fig. 7, which gives the 
agent 's  t ra jectory  after mult iple  manipula t ion  trials). I 
discovered that  the system was manipulab le  in this sense 
when some of the volunteer  observers  asked me to create 
specific agent  configurations that  they presumed would 
b e  interest ing according to their  previous observations;  
one of these configurations involved a single agent  alone in 
a world (the observer  r emarked  in this case, "it isn ' t  inter- 
esting, this agent  follows a very regular  path,  so when an 
agent  is alone,  he is stupid").  In short, the system is reactive 
as far as its" goal is concerned; what  appears  t o  be  necessary 
is a feedback at the level of the goal, and this has to be 
dynamic. 

A n  "au tonomous"  model  (mot ivated  and senescent)  

Having a dynamic  goal  necessitates a goal-revision mecha-  
nism. Fo r  the basic behaviora l  mode l  (Fig. 3), goal revision 
means to adopt  a new goal posi t ion in space. The impor tan t  
quest ion is, when does an agent have to revise its goal? 
Fol lowing the observat ions in the last section, goal  revision 
is necessary if there  has been  a lot of manipula t ion  trials. 
Since an agent  has no means  of detect ing that  it has been  
manipu la ted  (unless it possesses a gyroscope,  an odometer ,  
or  o ther  sensor of a similar type),  the only cri ter ion it can 
use is a t empora l  one: with a t ime-out ,  the agent revises its 
goal. It also appears  natural  to say that  an agent will revise 
its goal  on a t ta inment  in an effort  to live longer. In  any case, 
we run the risk of again having the same manipulabi l i ty  
p rob lem on a metalevel  if we do not  introduce a goal-  
revision cr i ter ion that  is t rue in the beginning and that  
gradual ly  becomes  false. 

We  have therefore  in t roduced an addi t ional  var iable  - 
called adaptivity to show that  it expresses the agent 's  possi- 
bility to adapt  or  revise its goal  - and a threshold to which 
it is compared.  If adapt ivi ty is super ior  to this threshold,  
the agent  can revise its goal, otherwise it cannot. Feedback  
affects the  adaptivi ty pa rame te r  to ensure the nonmanipul -  
abili ty of  the system. As  a negative force acting on adapti-  
vity, we have in t roduced a t empora l  adaptivi ty degrada-  
t ion factor. Finally, for the senescence mechanism to be 
self-catalytic, we also had to in t roduce two paramete r s  of 
adapt ivi ty regenera t ion  on goal a t ta inment ,  or whenever  
there is social distraction. In  this way, the two parameters 
o f  adaptivity and sociality are coupled in a double loop: 
if the agent  is adaptive,  then it discovers a new goal and 
it runs the risk of encounter ing other  agents and being 
distracted.  If the agent is distracted,  its adaptivi ty rises. 
This double  loop is a re inforcement ,  or self-catalytic, loop,  
since by itself it leads to a system where adaptivi ty 
constantly increases. However ,  we have a l ready seen 
that  the agent 's  activity leads to a decrease in sociality, 
which will, in turn, prevent  adapt ivi ty from increasing. If, 
on top of these, there  is a t empora l  degradat ion  mechanism, 
adapt ivi ty will eventual ly decrease,  and somet imes it will 
show local maxima. A n  agent  complying with this senes- 
cence mode l  is therefore  more  au tonomous  than the previ-  
ous one (since the user cannot  keep  it alive artificially by 
persis tent  manipu la t ions )  because it shows a relat ive au- 



tonomy as far as its goals are concerned.  Its p rob lem is how 
to socialize enough in order  to live a long t ime, but  not  
socialize too much, otherwise it runs the risk of  not  achiev- 
ing its goals in t ime and dying prematurely .  The  model  is 
summarized in Figs. 8 and 9. 

As  expected,  the agents in this model  are not  as manipu-  
lable as those in the previous model .  Figures 10 and 11 show 
the t ra jectory of an agent  and the effect of mult iple manipu-  
lat ion trials. We  observe that after persis tent  manipula t ion  
trials, an agent  may  revise its goal  or  die, and that  the more  
an agent  has "worked"  during its life, i.e., the more  goals it 
has pursued,  the less manipulable  it is and the more  suscep- 
tible to dea th  (as if it were exhausted).  

Adapt iv i ty  is the crucial pa ramete r  that  shows if an agent  
is "alive" or  not. Sometimes,  the maximum adaptivi ty is 
at the agent 's  birth,  so that the agent remains  alive by 
"inert ia,"  as if it were  condemned  right from the beginning 
(and in a sense it is). Otherwise,  the adapt ivi ty  curve of a 
mult iagent  system (which is computed  as the mean  of the 
adaptivi ty variables of the individuals)  wilt be bell-like, 
whereas  the adapt ivi ty  variables of the individuals may 
show one or  more  local maxima (Figs. 12-14). Adap t iv i ty  is 
also a m e a s u r e 0 f  the manipulabi l i ty  of an agent  in a social 
context: if a moving agent  passes near  a dead  agent  whose 
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sociality is high enough and whose adapt ivi ty  is close 
enough to its threshold,  the  lat ter  may be  resurrected and 
set off toward  a new goal. Consequently,  a system may  be 
dead while its components  would be very  alive in another  

Fig. 8. Autonomous model. The adaptivity of the agent is negatively 
catalyzed. The positive reward links are not visualized 

Fig. 10. Manipulation trial in the autonomous model. The original 
trajectory of the black agent passes through multiple goals (as can be 
seen from the changes of heading in the trajectory) 

Fig. 9. Autonomous model (motivated 
and senescent) ~ ' ~ A u t o n o m o u s  model (motivated and senescent) 

Program 

I f  the goal is met or timeout, then the agent sets a new goal 

(if  adaptivity >_ threshold, then (it is adaptive) new goal), 

otherwise death (death is "'simulated" as goal=currentposit ion) 

Temporal decay 

Regeneration whenever a goal is met : 

Regeneration during distraction 

Decay off1 on goal revision 

Decay o f  ~ on distraction 

Decay o f  timeoUt on goal revision 

adaptivity := adaptivity*fo 

adaptivity : = adaptivity*(1 +fl) 

adaptivity := adaptivity*(1 +f2) 

f,:=f~*fo, 

f~:=f~*fo 
timeout := timeout*fo 

Genes : f  o, fl, ~ ,  timeout, sociality, adaptivity, threshold 

Initial values : adaptivity(O) ~ (0.5,1), timeout(O) e (50,100), 

threshold~ (O.l,O.2), fo(O) ~ (0.75,0.95),f1(0) ~ (0.5,0.9), 

f2(O) ~ (0.1,0.3) J 
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Fig. 13. An agent's adaptivity shows small jumps during each "regen- 
eration"; this agent's parameters at death are adaptivity = 0.0918, 
sociality = 0.941, time-outs = 0, revision trials = 16, regenerations = 15 

Fig. 11. Manipulation trial in the same configuration as the previous 
figure. After perturbation, an agent retries many times, and at some 
moment it revises its goal (it changes its mind, we can say) or it dies. 
The visualized trajectory is the one of the top-left black agent, which is 
brought by force to this corner and soon afterwards dies. Compare this 
with the previous figure, and note that the various manipulations have 
slightly perturbed the overall system; e.g., the black agent of Fig. 10 is 
now situated in the middle of the grid 

Hg. 14. Sometimes the adaptivity decreases continuously from the 
beginning, with the global maximum being at t = 0 (this is the case of 
a system of 100 agents that died at t - 514) 

impor tan t ,  is tha t  if social  re la t ions  were  " m a n u f a c t u r e d "  by 
the  agents  themse lves ,  such a r enewa l  of  a sys tem of agents  
wou ld  be  poss ible  in p r inc ip le  bu t  imposs ib le  in prac t ice  
(unless we  had  access to the  who le  n e t w o r k  of  social  re la-  
t ions b e t w e e n  agents,  as wel l  as to the  detai ls  of  the i r  goal-  
rev is ion  mechan i sm,  in which  case we wou ld  do  be t t e r  to 
i n t e r v e n e  drast ical ly and cut  once  and for  all those  de le ter i -  
ous f e e d b a c k  links). No te ,  finally, that  the  goal  rev is ion  
m e c h a n i s m  induces  s o m e  sort  of  d ivers i ty  in the  spat ial  
re la t ions  that  in turn d e t e r m i n e  the  social  ones.  

Fig. 12. The adaptivity curve (the mean adaptivity across agents) is 
bell-like. One can say that the agent's adaptivity curve shows its devel- 
opmental history: the system develops up to the point of maximal vigor, 
and then declines until its death. As far as sociality is concerned, it 
decreases continuously owing to the temporal decay mechanisms and 
the negative feedback loops 

social  context .  (In a real  organism,  m a n y  cells a re  individu-  
ally al ive w h e n  the  o rgan i sm dies. 11) 

This  br ings  us to ano the r  ques t ion:  can we  (and should 
we) i n t e r v e n e  in a dying sys tem to increase  its adapt iv i ty?  
This  looks  poss ible  only in the  first s tages of  the  sys tem's  
(and the  agent ' s )  life, whe re  one  can,  for  instance,  rep lace  
an agen t  by a " y o u n g e r "  one  or  in jec t  n e w  agents.  H o w e v e r ,  
the m o r e  the  sys tem ages, the  g rea te r  the  n u m b e r  of  agents  
that  w o u l d  n e e d  such a " r e p l a c e m e n t . "  W h a t  is e v e n  m o r e  

A "cogn i t i ve"  m o d e l  (se l f - regula t ing)  

T h e  m o d e l  of  the p rev ious  sec t ion  rel ies  on a n e t w o r k  
of  coup led  funct ions  that  m a k e  cer ta in  physiological  
p a r a m e t e r s  of  the  agent  decay.  A n  agen t  could  l ive l onge r  if 
it had  the  possibi l i ty  to " d e l a y "  the  deg rada t i on  of  those  
p a r a m e t e r s  wi th  the aid of  a m e c h a n i s m  hav ing  a " r e g e n e r a -  
t ive"  e f fec t  on  them.  Such a r egene ra t i ve  m e c h a n i s m  can 
be  seen  as a " cogn i t i ve"  mechan i sm,  i.e., one  that  possesses  
knowledge ,  o r  in our  case m e t a k n o w l e d g e  of  the  agen t  u p o n  
itself. D e l a y  of  the  d e g r a d a t i o n  m a y  be  ach ieved  in the  
case of  the  p rev ious  m o d e l  t h rough  regu la t ion  of  the  same  
pa rame te r s ,  i.e., t h rough  se l f - regula t ion  of  the  agen t  itself. 
In  an e f for t  to show that  the  re la t ion  b e t w e e n  ind iv idua l i ty  
and  social i ty  is conse rved  w h e n  one  ascends r egu la t ion  
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~ l G o a  COgnitive model  (self-regulating) 

Individuality regulation 

l distance regulation system 

Goal met ~ distance := distance*(l +rD) 

Timeout ~ distance := distance*(1- rD) 

new goal's distance : = distance*(1 +noise) 

2 Sociality regulation (restoration) 

Sociality factor regulation system 

with a regulation (adaptation) window Ws 

I f  sociality < eigen sociality, 

sociality .'= sociality + rs*( eigen_sociality-sociality) 

rs := rs *(1-drs) (rs decay) 

and Ws : = ws *(1-drs) (Ws decay) 

Genes : As before plus distance, rD, noise, Ws , rs, drs, eigen_sociality, 

Initial values : As before plus rD ~ (0.1,0.2), rs ~ (0.2,0.5), noise ~ (-0.1,0.1), 

eigen_sociality ~ (2,4), Ws ~ (20,30), drs e (0.01,0.05) / 

levels, we have implemented and compared two self- 
regulation mechanisms: a mechanism of regulation of the 
distance of the new, revised goal, and a mechanism of 
sociality regulation. 

The first is a mechanism of regulation of  the agent's 
individuality, and is based on the following observation: 
if an agent follows a very distant goal, it runs the risk of 
getting too distracted with respect to its goal, and therefore 
it will time-out prematurely and have to revise its goal (as a 
side effect, the sociality time-out itself would decrease). 
Regulating the distance of the new goal means that the 
agent will gradually choose closer or farther goals according 
to whether the goal revision is due to a time-out or to a goal 
achievement, respectively. This mechanism tends to regu- 
late the agents' behavior in a way that will avoid too fre- 
quent socialization. 

The second mechanism regulates sociality directly, and is 
based on the observation that the system's sociality always 
decreases, and this is why the system dies. Thus, we can 
think of direct regulation of sociality, but an absolute crite- 
rion concerning the direction of regulation (increase or de- 
crease) cannot be found, since there is no means of knowing 
whether an agent has socialized too much or too little, or to 
estimate the appropriate value for the sociality factor in a 
particular configuration. We have therefore adopted the 
alternative of regulation according to an endogenous refer- 
ence value (an eigen-sociality): since the problem is that 
sociality decreases, we will try to restore it if its value falls 
below the reference value. The two models are summarized 
in Fig. 15. 

Fig. 16. Cognitive model 1. The distance regulation is independent of 
the agent's activity and is not affected by the senescence mechanism 

Individuality regulation 

Individuality regulation (cognitive model  1, Fig. 16) is regu- 
lation of the distance at which the new goal is chosen during 
revision. At  the beginning of the simulation, this distance is 
chosen randomly between 0 and the maximal possible dis- 
tance in the grid. Unlike the previous models, this one does 
not necessitate a negative feedback link affecting the regu- 
lation parameters (here the ro parameter)  because the goal 
distance is not  a parameter  whose decrease (or increase) 
would explicitly be connected to the senescence function; 
distance regulation is just a means to regulate the sociality 
indirectly. 

This regulation mechanism has been introduced to show 
that the agents managing to live longer are those that are 
more adaptive in their search of new goals, i.e., those that, 
in one way or another, "learn" from their failures (for in- 
stance, because they choose successive goals close to one 
another). However,  this regulation mechanism did not lead 
to a considerable increase in life span as compared with the 
previous model: actually, the performance has fluctuated 
above and below that of the previous model. Why? One 
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reason is that  individuali ty plays only a minor  role  in an 
agent 's  survival in a society. However ,  the most  impor tan t  
reason is that  this regulat ion may have an effect only in the 
case where  it would make  sense to choose the direct ion of 
distance regulat ion,  and thus of sociality adapta t ion ,  i.e., to 
choose between  an increase or  a decrease  of sociality. On  
the other  hand,  the next  mode l  relies on a direct  regulat ion 
of sociality, and it will be compared  to this one later.  For  the 
time being, it is sufficient to note that  indirect  sociality 
regula t ion via distance regulat ion has had an unstable per-  
formance,  because the new goal distance by itself does not  
induce a specific degree  of sociality. The  justification is that  
there  remains  an uncontrol lable  pa r ame te r  in this model ,  
which is the actual  configuration of o ther  agents: choosing a 
closer goal  in order  to restrict the consequences of  sociality 
makes  no difference if all o ther  agents are nearby.  

Sociality regulation 

We implemen ted  this direct sociality regulat ion mechanism 
(cognitive mode l  2, Fig. 17) to show that,  compared  with the 
previous models,  it leads to a longer  life span for the 
mult iagent  system. 

Compara t ive  results and evaluat ion 

Table 1 gives the comparat ive  results obta ined  with all four 
models  for various agent popula t ion  sizes. Except  for the 
instabil i ty of the goal distance regulat ion mechanism, the 

Fig. 17. Cognitive model 2. The sociality regulation has to be a senes- 
cent mechanism as well 

o ther  results are  as predicted:  regulat ion makes  the system 
live longer.  

The agent ' s  physiological  ne twork  is presented  in Fig. 18. 
Its essential  e lements  are the negative instruction and feed-  
back loops  (a few secondary  posit ive feedback links and 
the in ternal  loops of the "programmat ic"  parts are not  
visualized). 

Discussion 

Time and knowledge 

The  critical pa rame te r  of the senescence model  is time: the 
dynamics of the  metabol ic  rate  of agents is responsible  for 
the system's  aging rate,  although the two rates are not the 
same, and each one is the result o f  a complex system o f  
interactions. The  self-catalyzed feedback loops have the 
consequence that  the dynamics remain  irreversible,  and the 
system is sure to die despi te  the unpredictabi l i ty  of its emer-  
gent behavior .  This means  that  the dynamics and the life- 
span of  the sYstem cannot  be deduced  solely from the 
agent 's  parameters :  outside an interact ion context,  an ob- 
server  cannot  say much, and the same agent  in two different  
contexts may give rise to different  phenomena/behaviors .  In 
this sense, time as a design parameter does not have the 
same "semantics" as time as an observation parameter. Time 

Table 1. Comparative table of life spans in the three models (in a 20 • 
20 world). The results are average values over 20 simulations per case 

Reactive 
model Autonomous Cognitive 1 Cognitive 2 

10 agents 172.4 245.9 241.85 339.25 
20 agents 225.6 274.4 280.85 882.95 
30 agents 255.95 271.05 292.1 1146.95 
40 agents 293.3 280.15 291.3 1355.55 
50 agents 298.35 300.65 308.4 1440.3 

Fig. 18. Cognitive model: complete physiological 
network. The global adaptivity of the agent is nega- 
tively catalyzed 



as an observation parameter  may have more than one sense: 
as observers of the system, we can choose to observe the 
life-spans, or certain cycles generated by the emergence of 
various forms. However,  for the agent itself, t ime as a 
design parameter  has one single meaning, i.e., its survival 
potential, which is not  independent  either from the other 
behavioral parameters  of the agent or from its interaction 
with its envi ronment  and with the other agents. A n  agent 
with a high t ime-out is expected to live a long time provided 
that its perception range allows it to socialize enough but 
not  too much. As stated elsewhere, in a system founded on 
a network of feedback links between metabolism and pro- 
gram, the life-span is neither prespecified nor  specifiable. 
Fur thermore  , the life-span should not be specifiable, other- 
wise an external observer could artificially manipulate  the 
system and extend or shorten its life-span at will. We can 
reverse this conclusion to say that What is not specified can- 
not be directly controlled, and therefore the behavior o f  a 
truly autonomous system must  show a degree o f  emergence. 
Once more, an external manipulator  agent maintains only a 
limited intervent ion freedom: I managed to double the life- 
span of a system by injecting brand new agents from time to 
time at selected positions. However,  this freedom results 
from the system's own potential without being connected in 
any explicit way to the manipulator 's  intentions. 

We also saw that the system's life-span may increase if 
the agents have the possibility to modify their own dynam- 
ics of interaction with the world and with the other agents. 
The important  result is that, despite this possibility, the life- 
span of the system is never specified in advance. Our  view of 
time as a parameter  of the aging process is consistent with 
the current trend in aging research: " . . .  we need to make 
time an independent  rather than a dependent  variable in 
our analyses. Instead of using the calendar to measure ag- 
ing, we need to be able to use the changes in important  
physiological variables to measure aging." (Arking I2, p. 11) 
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Fig. 19. Demonstration of the need to act on the regulation param- 
eters. The adaptivity and sociality curves of an "immortal" (cognitive 
type) system that stabilized to a sociality value of 1.65 with an 
adaptivity that converges to 0. This result is due to the absence of 
negative feedback on the sociality restoration factor 

Fig. 20. But all the regulation parameters ought to be affected by a 
senescence link. This is the curve of an agent's sociality in a "cognitive" 
system with negative feedback on the sociality restoration factor, but 
not on the restoration time-out. The restoration trials are therefore of 
uniform frequency, so that the sociality decrease is nearly linear 

Regulat ion and feedback 

We have shown that the life-span of the system increases if 
agents possess implicit or explicit mechanisms of sociality 
regulation, which is the crucial parameter  of senescence. 
The parameters of those self-regulation mechanisms have 
been defined as senescent since this ensures the system's 
mortality. We managed to show the occasional immortali ty 
of systems whose regulation parameters are not  negatively 
catalyzed by the same senescence feedback links (occa- 
sional immortali ty means that all systems having this behav- 
ior are not necessarily immortal).  

First, Fig. 19 shows the sociality and adaptivity curves for 
a cognitive-type system without negative feedback on the 
sociality restoration factor; this system has become immor- 
tal. Next, Fig. 20 shows the behavior of a system of the same 
type with negative feedback on the restoration factor, but 
without negative feedback on the restoration window, This 
system is mortal, but  the decrease in sociality is linear, and 
therefore after a certain point it is more "predictable." A 
third system of the same type with feedback at all levels is 
visualized in Fig. 21, which shows a sociality evolution typi- 

Fig. 21. An agent's sociality in a "cognitive" system with feedback at 
all levels. The sociality restoration trials are not of the same frequency, 
and sociality shows a final "abrupt" fall, i.e., a catastrophe or an ava- 
lanche effect (since the restoration factor decrease is self-catalyzed 
through the decrease of the restoration window) 

cal of self-catalytic systems, and more specifically a phe- 
nome non  of avalanche or catastrophe. We have also shown 
that a second-type system (autonomous model) without a 
decrease in factors fl, f2, and t ime-out can also become im- 
mortal, but this time its immortali ty shows not as sociality 
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stabil izat ion with adapt ivi ty converging to 0, but  as adap-  
tivity stabil izat ion with sociality converging to 0. 

\ .  
The conclusion from these exper iments  is that  a system is 

senescent if  the parameters of  its highest regulation level (and 
therefore its highest cognitive level) are decreasing. More-  
over, self-catalysis as defined, with recursive feedback  links, 
is not  a simple embel l i shment  of the mechanism to bring it 
closer to the biological  reality: self-catalysis is the simplest  
aging mechanism (the p reprogrammed,  monotonic ,  de- 
crease being excluded because of predic tabi l i ty  and relat ive 
manipulabi l i ty) .  Self-catalysis is therefore a necessity, and 
in its absence the system would run the risk of  becoming 
immortal. 

Genet ic  representa t ion  and senescence 

In view of the above exper iments  and discussion, it is inter- 
esting to observe that  all of the pa ramete r s  we have quali- 
fied as "genes"  are subject to one-way modificat ion except 
the adapt ivi ty  parameter ,  that  is subject  to complex modifi- 
cation defined by three  rules ins tead of one (see Fig. 9). 
Adap t iv i ty  is, precisely, the crucial pa rame te r  that  charac- 
terizes the agent 's  vitality and determines  its life-span. A n  
agent with genetically encoded adapt ivi ty  may be  manipu-  
lated by direct  in tervent ion at the level of the adapt ivi ty 
gene, and so a truly autonomous  senescent  agent  should 
not  encode  this pa ramete r  genetically. Instead,  adaptivi ty 
should be a var iable  of the metabol ic  par t  of the agent,  but  
of course, the initial value of  this pa rame te r  may still be 
genetical ly encoded.  More  generally,  all parameters that 
undergo complex modifications during an agent's life should 
be implemented as metabolic variables rather than be geneti- 
cally encoded in order to ensure maximal autonomy. 

One can still intervene in the o ther  genes and indirectly 
influence the agent 's  life span, but  this is not  a safe method  
according to the above discussion, i.e., results are not  guar- 
anteed.  The  deeper  reason for this p h e n o m e n o n  is that  the 
behavior  of the agent,  as well as its actual  life span, are a 
result  of  the interplay be tween the genetic p rogram and 
metabol ic  "act ion" modula ted  in its enclosing environment .  
Fur the rmore ,  the various genes exhibit complex interactions 
through the agent's body: the expression of a par t icular  gene 
yields different  results at different  moments  because  of its 
indirect  dependence  on the previous expression of o ther  
genes (for example,  in Fig. 9, the effect of fl on adaptivi ty 
will differ depending on how many times f2 has a l ready 
fired, and vice versa). 

Conclusion 

W e  have presented  a senescence mode l  using feedback  be- 
tween the metabol i sm and the genetic p rogram of an agent, 
and three  successive models  that  increase the life expect-  
ancy of the populat ion.  I t  has been  shown that  every addi- 
t ional regulat ion level leads to an increase in the system's 
life-span, and that  this span is nei ther  prespecif ied nor  de- 

Table 2. Recapitulation of the approach and the results 

The problem 

The application 

The solution 

The conclusions 

A model of continuous senescence that ensures the 
death of the agent without prespecifying its life 
span 
This senescence model should favor social rather 
than solitary agents 
An abstract problem of goal direction with sociality 
that shows as distraction from the goal 
Goal revision 
Regulation of the distance from goal, or of sociality 
Senescence = negative feedback from the 
metabolism to the genetic program 
�9 Reactive model = manipulability 
�9 Reactive model vs. motivated (autonomous) 

model vs. self-regulating (cognitive) model 
�9 Regulation of the distance from the goal is less 

efficient than sociality regulation 
�9 Each subsequent regulation level increases life 

span 
�9 Regulation of the distance from the goal 

unstable performance 
�9 The senescence feedback should affect all the 

parameters of the highest regulation level 
�9 Some parameters should not be genetically 

encoded 

ducible from the phenomena .  I t  has also been  shown that  in 
this social system, sociality regulat ion is much more  impor-  
tant  than individuali ty regulation,  since sociality is itself 
much more  impor tan t  than individuality.  To ensure the 
agent 's  mortal i ty ,  the senescence feedback should affect all 
the pa ramete r s  of the highest  regulat ion level. 

This mode  of  coupling be tween genetic p rogram and 
metabol i sm favors the emergence  of nested regula t ion 
loops that  increase the system's  life span. We have not  
descr ibed how these loops or  regula t ion levels could emerge  
or evolve, we have simply demons t ra ted  their  "selective" 
advantage  in terms of longevity. Table  2 recapi tulates  the 
major  points  of the approach,  the application,  and the re- 
sults obta ined.  

As  immedia te  further work, we p lan  to use this mode l  in 
systems with more  than one type of agent,  which is equiva- 
lent  to a mult icel lular  organism with different iated cells. We  
in tend to pe r fo rm two studies, one on reproduct ion,  where  
we will try to reproduce  the classic results of Hami l ton  13 at 
a suborganism level, and another  on the emergence  of can- 
cer in such systems. W e  have had some initial clues 14 that  
when the number  of agents becomes  unusually high, the 
system dies sooner,  thus exhibit ing a cancer-l ike behavior .  
The case of di f ferent ia ted mult iagent  systems would be a 
much. be t te r  vehicle for this type of study. 

As  well as such theoret ical  considerat ions,  this s tu@ of 
senescence is also of some pract ical  importance:  since such 
a senescence function is thought  to favor social relat ions at 
an arbi t rary  organizat ional  level, we intend to use it as a 
learning force at the cellular level within an artificial animal. 
W e  ~s have a l ready repor ted  that  a ne twork  of cells self- 
organizes spontaneously  in cases of individual  cell failures, 
and tries to "discover"  new social interactions.  A natura l  
degrada t ion  force, such as a senescence function, might 
induce "na tura l"  failures by per turb ing  the network,  and 



could maintain self-organizational activity at its maximum, 
thus maintaining the activity of the network (and keeping 
the agent alive). As  a side effect, the new social interactions 
within the cellular network might give rise to what an exter- 
nal observer would perceive as learnt behaviors. Note that 
this view of cellular learning as the emergence of new social 
structures within the cellular agent implies that learning, 
too, is an irreversible process and that m e m o r y  is not  cyclic. 
The cellular agent will then learn not because of any exter- 
nally imposed forces, but for an intrinsic reason, that of 
living longer. 
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