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In the present study, we investigate and analyze the behavior of

explorer agents. We perform a number of experiments with single

and multiple agents and we obtain a number of corresponding

results. First, we decouple the agent’s functional=motivational sys-

tem from its cognitive=representational system and show that intri-

cate regulation is necessary to achieve effective and efficient

behavior. In the multiple agents case, we extend the single agent

behavioral model with a form of sociality selected from a pro-

gression of alternatives designed and evaluated. We also show how

the general regulation perspective allows for design and analysis of

explorer systems. We do not miss to provide variations of the

problem and potential applications all along the way.

INTRODUCTION

Exploration is a typical problem encountered in the behavior-based

robotics literature and owes its name and formulation to one of the very

first projects in behavior-based robotics that aimed—somewhat futuristi-

cally—at the exploration of Mars (Angle and Brooks 1990): a set of

robotic agents lands on a planet with the mission to explore its surface

for samples of minerals having certain properties. The robots arrive in

a spaceship that serves as the planetary base in the course of the mission.
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The mission is accomplished when the whole surface contained within a

certain distance from the base is explored. We ought to note that this

exploration problem is described as a sampling one, where the agents

have to pick some mineral samples from the sources of interest. However,

in practice, in the corresponding literature, the problem is tackled as a

sweeping one, where the agents have to exhaust the sources of interest

(cf. for instance Brooks and Flynn (1989), Beckers et al. (1994)). In both

cases, it is a field coverage problem: the termination criterion is that all

the assumed surface should be explored. In the same course of ideas

as the researchers in behavior-based robotics, we have adopted the

sweeping variant that lends itself to a more worldly instantiation: let us

imagine a set of robotic agents thrown in a garage, a subway station,

or another delimited area, with the mission to clean away all objects of

a given type, usually litter, such as empty soda cans, nylon bags etc.

The agents are supposed to return to their base once their mission is

accomplished: the subway-cleaner robots are going to wake up and enter

in activity outside operation hours, for instance at night, and return to

their base definitely once they have cleaned everything, before the

reopening of the station. With respect to sampling, sweeping appears

therefore a more primitive problem, since it assumes the same function-

ality for navigation, detection and localization, but without necessitating

a sophisticated spatial reasoning: in the case of sampling, the robot has

to remember, in a way or another, all the sources of mineral that it has

already explored, so as to avoid visiting them again, while in the sweeping

case, the fact that a mineral source has been visited does not have to be

registered in memory as such. The memorization or the marking of visited

positions, explicitly or implicitly with the aid of mechanisms such as

traces or pheromones (for example, Steels (1990)), would induce an

increase in efficiency and sweeping speed, but it is not part of the sweep-

ing task’s description.

The sweeping problem has been tackled until now from a functional

point of view:

Sweeping (1)—Functional point of view: How does one or more agents

sweep a delimited area to exhaust the sources of interest?

The answer to this question is a control system, an architecture, that

allows an agent to navigate, perceive, and detect mineral etc., in order

to sweep the area in question.
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A solution such as those encountered in the literature (for instance,

Matarić 1992b, 1994) usually draws on social insect behavior modeling

(Deneubourg et al. 1990). As such, it comprises a set of fundamental

reactive behavioral rules and a random component and even without

spatial reasoning or learning, the coverage of the interest field and the

exhaustion of the mineral sources are statistically ensured. However,

from a more cognitive point of view, this functionality alone does not

respond to the crucial question:

Sweeping (2)—Cognitive point of view: How do the agents know that they

have swept the whole area, or that they have accomplished their mission?

In order to answer that question, we have to reformulate the description

of the sweeping task, in a way so as to include an expression, analytical

or other, that represents the termination criterion, that is the exhaustion

of the mineral sources. To this end, it is sufficient to define an

environmental or world variable, the density of mineral sources, which

characterizes the state of the explored area at any moment. The

explorer-sweeper agent’s goal becomes therefore to bring the value of

that variable to 0. We will see that an agent having a representation of

that variable constitutes a simple solution to this description problem.

Sweeping—Environmental variable: The critical variable that describes

the sweeping task is the density of the sources of interest (for example,

mineral sources) in the explored area, denoted in what follows as pw.

Thirdly, we seek to study the system’s operationality, i.e., the relation

between the agents’ internal architecture and their performance, in order

to find=elaborate an architecture that optimizes this performance. The

operationality criterion that applies to the sweeping task is, quite obvi-

ously, the mission’s duration: the agents are more efficient if they

accomplish their mission earlier.

Sweeping—Operational criterion: The measure of the agent’s perform-

ance is the duration of the mission: an agent A is more operational than

an agent B, if for the same initial environmental conditions, it accom-

plishes its mission earlier.

The (initial) density of the mineral sources in the world thus serves as a

free parameter of the sweeping task, i.e., an environmental parameter
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uncontrollable by the designer and=or the master of the agents. An optimi-

zation of the agents’ performance would correspond to the minimal mis-

sion duration. Moreover, we would like mission duration to be linear on

the value of the environmental variable, to allow ourselves to predict and

design for performance. The mission’s duration can be computed as the

sum of the sweeping duration as such (that is, the period of time elapsed

up to the point of picking the last remaining sample) plus the additional

time necessary for the agent to realize that the whole area is swept and

to definitely return to the base. The first term is a function statistically lin-

ear on pw(0), that depends exclusively on the agent’s elementary function-

ality, i.e., on the way it sweeps the area picking up the samples. The

cognitive system of the agent according to previous definition is responsible

for the second term. The two systems, the functional (sweeping) and the

cognitive system, operate in parallel, as we will see in section 2.

Sweeping (3)—Operational point of view: What is the behavioral model

of a sweeper-agent that optimizes the system’s performance for all initial

environmental conditions? That is, what is the model that allows the

agent to terminate its mission as early as possible after the sources’

exhaustion, independently of the value of pw(0)?

In the simulations below, the world under exploration is defined as a

square around the central base: the size of the world is therefore the

length of the square’s edge (unless otherwise stated, the results reported

below have been obtained in a 25� 25 world). We assume that the base

emits regularly an orientation signal, which the agents perceive and use

to return to the base. We also assume that the transport capacity of the

agents is limited (here it has been set to 30)—this is what forces them to

return several times to the base in order to deposit the collected samples.

Finally, and since the simulations are discrete in time and space, we

assume that every action (move, charging of a sample, complete dis-

charge at base) lasts one unit of simulation time.

In the next section we will describe the sweeper agent’s motivational

system that ensures the fundamental functionality and discuss the tuning

of its various parameters. Next, in the section Cognitive=Representational

Level: Recursive Satisfaction and Adaptation, we will present the elemen-

tary cognitive component that ensures the termination of the mission.

After presenting and comparing two adaptation alternatives considered

in the section Endogenous and Exogenous Adaptation, we will study in
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the section Operational Coupling: Meta-Adaptation and Self-Regulation,

the coupling of the agent with its world in an operational manner and

we will show the need for a self-regulatory mechanism.

After studying the problem of exploration=sweeping in the single

agent case, we will consider the case of multiple explorer agents. The

new questions arising are the following: Does the nature of the problem

change qualitatively? To what degree does the system’s performance

improve? Do the agents need some kind of social action, an additional

mechanism for adaptation, regulation, or other to realize the termination

of the task, i.e., the exhaustion of the sources of interest? In all cases, we

will not add any additional functionality, such as group transport by mul-

tiple agents (Kube and Bonabeau 2000) or traces=markers of field (Steels

1990). As in the case of the solitary explorer, we will neither add any

learning mechanisms, instead the focus of interest of this study is the ter-

mination of the sweeping activity. Figure 1 shows the state of a world under

exploration by 10 sweeper agents.

Sweeping (4)—Social point of view: Do we need an additional social

action when we move from a single to multiple sweeper agents, in order

for them to realize collectively the exhaustion of the sources of interest?

We will study in the section Population Effects the performance of the

sweeper agents according to the number of agents. Contrary to what is

stated in the relevant literature, it will be concluded that this perform-

ance does not show a self-catalytic, thus super-linear improvement, but

rather it shows a saturation level and stabilizes itself for large-agent-

population sizes. Next, we will study the performance of an agent popu-

lation having an additional instrumental behavior of spatial dispersion

and it will be revealed that not only the dispersion does not improve

the overall performance but it makes it degrade due to the instability

of the induced spatial configurations. In the section Sociality Models,

we will compare several models of reactive sociality and we will arrive

at the conclusion that the cooperative sociality and the tit-for-tat soc-

iality are the most operational types of sociality for the exploration=

sweeping problem. Some strange results obtained with a variant of the

tit-for-tat model will also be discussed. In the section Variations of

the Problems, two variants of the original exploration problem will be

discussed and the article will conclude with a general discussion of the

behavioral model and its implications for autonomous agent design.
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THE SINGLE AGENT CASE

Functional Level: Motivational System

The first implementation of the explorer’s functional level has been based

on the previous approaches found in the literature, the most prominent

example being that of Matarić (1992b) (see also Beckers et al. (1994)).

There were two tasks by agent: (1) the foraging (or hunting) task and

(2) the return-to-base task. There was also a mechanism of flow or

propagation of activation between tasks, inspired by Maes’ mechanism

(1990, 1991).

This implementation revealed two problems. First, the agent’s beha-

vior shows a phenomenon of an operational cycle with the trips back and

forth to the base, that is not explicitly prescribed in the tasks’ description,

i.e., those phenomenal cycles are emergent. This would not be annoying

if our goal were to simply develop the agent’s functional system; however,

once we turn our interest to the system’s operationality, i.e., to its

Figure 1. A 25� 25 world during exploration by 10 agents (pwð0Þ ¼ 0:9). The agents are

visualized as ants for historical reasons, because the earliest behavior-based models made

extensive reference to social insect behavior, especially ants. They pick=consume first the

samples that are closer to their base (depicted in the center of the field).
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performance, emergence is no longer enough. What looks necessary is a

means to control those otherwise emergent phenomena through a fairly

central motivational system.

Second, if the activation flow between the various rules (or else the

individual actions) that constitute the two tasks is allowed to inflate=

deflate in the course of the propagation, the comparison of levels of acti-

vation and the competition between tasks loses its balance, and the

design of the activation propagation mechanism becomes problematic.

This point has been unraveled and analyzed extensively by Tyrrell

(1993a, 1993b, 1994) who suggested hierarchical architectures and

eventually central action selection systems.

We have thus defined two structural=behavioral units, called tasks,

that compete with each other by expressing each an individually com-

puted preference or motivation to execute and use actuator resources.

We call the two tasks homing or return-to-base task and hunting or foraging

task, respectively. The homing task commands the robot to head toward

the base, if it’s not empty, while the hunting task commands the robot to

pick an encountered sample or to choose the most promising hunting

direction.

The two tasks need to compute locally their motivations that will

next be compared and arbitrated in the actuation systems’ level, here

the navigation system. Those motivations need to depend on a internal

variable (or drive or tendency to execute) as well as on one or more exter-

nal stimuli (that correspond to the future expected reward ). The goal of

this hedonistic agent is to bring both motivations to 0. According to the

ethological literature (cf. for example McFarland and Bösser (1993)), the

motivation’s computation formula ought to be either additive or multipli-

cative according to the two measures, the levels of internal drive and the

external stimuli:

Motivated Task

motivation ¼ drive�f ðstimulusÞ ð1Þ

or; k�drive þ ð1� kÞ�f ðstimulusÞ ð2Þ

f ðstimulusÞ ¼ ðstimulus þ aÞ=ðstimulusmax þ aÞ ð3Þ

To allow balanced competition between the various motivations, we need

to normalize all variables (here they are normalized between 0 and 1).
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For an additive rule of motivation computation (2), the normalization

necessitates another normalized parameter (k) expressing the relative

weight of the drive and the stimulus. Furthermore, the normalization

of the stimulus ((f stimulus), (3)) necessitates an amplification factor

(a) expressing the default preference of the agent for that task

(a=(stimulusmaxþ a)), i.e., expressing the possibility of a vacuum activity,

or else activity in the absence of stimulus. The parameter stimulusmax is

an endogenous parameter of the agent, namely the saturation value of

the corresponding sensor (the maximal signal value it gives). Note that

the real situation is lightly more complicated than what this formula allows

to see, because there actually exist two sensors, one for the appetitive beha-

vioral component and one for the consummatory component (McFarland

and Bösser 1993). It is therefore sufficient to simulate that system by

defining as output value of the consummatory component sensor (which

is binary by definition) the saturation value of the appetitive sensor.

Note also that the multiplicative motivation computation formula

(1) applies to the case of motivations whose drive and stimulus are

engaged in an OR relation (motivation is 0 if either drive or stimulus

is 0), whereas the additive formula (2) applies to the case of motivations

whose drive and stimulus are engaged in an AND relation (motivation is

0 if both drive and stimulus are 0).

Obviously, the drive of the homing task is the ratio charge=transport

capacity (more an agent is charged, more it is motivated to return to its

base), while the hunting drive is complementary to the former. On initi-

alization, the agent’s charge is 0, so its motivations for homing and hunt-

ing are respectively 0 and 1; the agent sets off from the base to hunt and

pick mineral samples. The homing task is of type (2), since the agent has

to be at the base and have a charge 0 in order for the homing motivation

to be 0, and cannot show any vacuum activity (a ¼ 0). The hunting task

is of type (1), since the agent needs a zero drive or a zero stimulus for the

task’s motivation to be 0, otherwise it will resort to vacuum activity

(hence a > 0). The tweaking of the a and k parameters has been made

in a way to prevent the agent from returning to the base prematurely,

i.e., when it is only a little charged (cf. detailed analysis in the end of this

section). The homing stimulus is the orientation signal emitted by the

base and its intensity in a given point in space is the grid size (size of

the edge of the grid) minus the perception distance normalized by the

grid size. As a consequence, the closer an agent is to the base, more it

will be prone to return to it to discharge. On the other hand, if it finds
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itself far away from the base, the homing motivation can prevail despite

its weak stimulus only if it has a high enough drive, or equivalently if the

agent is full or almost full. The hunting stimulus relies on the perception

of the mineral sources’ density at a distance, in a maximal perceptual

hunting range that has been set to three grid cells.

Homing:

drivehoming ¼ charge=capacity ð2Þ k ¼ 0:9; a ¼ 0

stimulus ¼ ðgrid size � distanceÞ=grid size ðmax ¼ 1Þ

Hunting:

drivehunting ¼ 1� drivehoming ; ð1Þ a ¼ 10

stimulus ¼ minðdensity=distance; 10Þ ðmax ¼ 10Þ

We can remark that the parameter a expresses the agent’s vacuum

activity as well as the task’s persistence (its dominance beyond the point

where it is of absolute priority). Persistence is also reinforced by a noise

factor involved in the perception of mineral sources density (with a 5%

probability, the perceived density at a distant point is incremented by 1).

This persistence is not prescribed in the agent’s architecture, it is there-

fore emergent; Beer and Chiel’s (1990) neural architecture demonstrates

such an emergent persistence, decaying in time, but unlike ours, the

drives are not explicitly represented in the architecture, i.e., there is no

motivational system.

A last observation is that the two tasks’ drives are coupled in a way

that the one’s satisfaction makes the other rise automatically. So, in the

absence of other mechanisms the agent’s activity and its round trips to

the base will be maintained forever, i.e., the agent’s satisfaction state

(homing motivation ¼ hunting motivation ¼ 0) is an unreachable state.

Inversely, if we want to maintain the agent’s activity forever, all that is

necessary is to couple its drives in that way. For example, Steels

(1995) described in the very same way a parasite elimination task—with

the only difference that coupling was situated outside the agent, it did

not refer to the internal drives but to the external stimuli. The homing

parameter k must be over 0.5 and close to 1, otherwise the agent keeps

too close to the base and terminates prematurely. The higher the k value,

the higher the task speed. The same holds for the hunting parameter a,

which must be close to stimulusmax, to ensure high task speed (due to
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higher tendency to explore). Also, obviously, the bigger the hunting

range, the higher the task speed. These are depicted in Figure 2, where

higher task speed shows as steeper slope for pw. Similar experiments

may be performed with different signal or drive formulas.

Cognitive/Representational Level: Recursive Satisfaction

and Adaptation

We come now to the second question: How do the agents know they have

swept the whole area in order to return to the base? They need a way to

detect the degree of task completion or else a termination criterion

(sweeping completed). The agent’s hunting motivation will then depend

recursively on that criterion. Once its value falls to 0, the agent will

return definitely to the base, because of the nonzero homing motivation.

At this point, both motivations will be 0 and the robot will not move

away from the base anymore. Recall that according to that arrangement,

the two behavioral components, the picking system and the cognitive

system are independent and function in parallel, they can therefore be

studied and evaluated separately.

Recursive Motivation (as before but multiplied by ‘term’):

motivation ¼ drive�f ðstimulusÞ�term

or; ðk�drive þ ð1� kÞ�f ðstimulusÞÞ�term
term ¼ termination criterion

Figure 2. (a) Task speed (pw curve against time) for k ¼ 0:5, k ¼ 0:7, k ¼ 0:9 ( pw(0) ¼ 0.5,

pa(0) ¼ 0.1)). (b) Task speed (pw curve) in three cases: default, a ¼ 3, range ¼ 5

( pwð0Þ ¼ 0:5).
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The only parameter of the task that can be useful to the development

of a termination criterion is the source density in the world pw(T). If

the agent knew in advance its initial value pw(0), we could define as

termination criterion a formula such as [pw(0)
�d

2
samples have been

collected] (where d is the size of the square’s edge, here 25). However,

this criterion is not safe because if a sample is not detected, the agent

will never terminate (on the other hand, we could certainly allow our-

selves to miss a couple of samples). Another more hybrid criterion is

a formula such as [pw(0)
�n�d

2
samples have been collected, or

pw(0)
�m�d

2
time units have elapsed]. The first term of the new termin-

ation criterion combines the previous formula together with an

additional tolerance factor n2 (0,1), while the second term represents

a time-out criterion.
The time-out depends obviously on the size of the explored world, so

that the m factor needs to be sufficiently larger than 1 to allow multiple

round trips to the base as well as an occasional erratic and exploratory

behavior. The first problem that such a criterion presents is that the value

of pw(0) is not known in advance. The second problem concerns the

tweaking of the m and n parameters. A simple solution to both problems

is to estimate continuously the value of pw(t) and, given that it falls to 0 as

a side effect of the agent’s activity, take as a termination criterion

pwðtÞ ¼ 0ðpwðtÞ < eÞ. Estimation of the value of pw(t) involves then a

representational variable which is local to the agent ( pa(t)) and may be

done through a simple formula of proportional adaptation using a

window of observation w:

Representational Variable: PaðtÞ
Proportional Adaptation ðwindow w, rate rÞ:

paðtÞ ¼ paðt � wÞ þ diff �r

diff ¼ pcomp � paðt � wÞ
pcomp ¼ number of picked samples=number of steps ðmovesÞ

ðduring the adaptation windowÞ

Termination Criterion:

paðtÞ < ep;where ep is a small threshold ðhere; ep ¼ 0:001Þ

The pcomp is the agent’s estimate of pw as computed during the adaptation

window and the proportional law ensures that the estimate’s update does

REGULATION PROBLEMS IN EXPLORER AGENTS 349



not take place too quickly. This adaptive representation system shows

the advantage of robustness in front of perturbations=manipulations

such as reinitialization of pw(t) during sweeping, which is unlike what

happens with the two previous termination criteria—this is due to the

fact that the estimation is a continuous process and does not rely on

ad hoc variables, such as a time-out variable. Figure 3 illustrates the co-

evolution of the two variables pw(t) and pa(t). As is shown in the figure,

the representational variable allows the agent to always solve its termin-

ation problem without ever taking the real value of the variable it represents

(except a crossing point). Both variables fall progressively to 0 without

ever taking the same value—we could say that pa(t) follows pw(t). Actually,

the rapid rise of pa(t) in the beginning of the sweeping phase is due to the

presence of a sensor of distant samples that makes the agent head toward

the mineral sources minimizing its erratic behavior in a way that most of

the visited places contain samples (for the same reason the percentage of

real field coverage at task termination is typically somewhere between

45% and 75%). The value of pa(t) falls then because the value of pw(t)

decreases as a side-effect of the agent’s activity who finds less and less

samples.

Note also that this coupling between agent and world (that shows as

a coupling between pa(t) and pw(t)) with the definition of a motivation

and a recursive satisfaction state, may make the agent unable to arrive

to its satisfaction state if the world is constantly perturbed (we can main-

tain the agent’s activity forever, if we systematically reinitialize the world

every time it is almost empty).

Figure 3. Coevolution agent-world: the agent is back at t ¼ 2512 (pwð0Þ ¼ 0:5;

pað0Þ ¼ 0:15; w ¼ 30; r ¼ 0:15). The curve that falls linearly is that of pw(t). The bell-like

curve is that of pa(t).
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To return to the utilitarian example of the robot that collects litter in

a subway station, we can imagine an additional mechanism that would

reinitialize the value of pa(t) at given moments (for instance every morn-

ing at 3 am) so as to force the agent to start sweeping. Such a mechanism

would thus give rise to a periodical phenomenon that would be perceived

as a small death of the robot every night.

Endogenous and Exogenous Adaptation

A second adaptation mechanism has been also studied. This mechanism

is more exogenous than the previous one, in that it depends on a per-

ceived measure, rather than on an activity measure computed inside

the agent:

Exogenous Adaptation:

pcomp ¼ mean of perceived samples=number of steps performed

ðduring the adaptation windowÞ

The comparative results of the two mechanisms are given in Figure 4.

The endogenous adaptation mechanism (adaptation by activity) gives

more idiosyncratic and predictive results, whereas the exogenous adap-

tation mechanism (adaptation by perception) makes the agent more

manipulable, since pa(t) is behind pw(t). Manipulability of the exogenous

adaptation criterion is manifest in that the agent is less robust to

Figure 4. Endogenous adaptation (by activity) versus exogenous adaptation (by percep-

tion). pwð0Þ ¼ 0:5; pað0Þ ¼ 0:15. Duration of the two experiments: t1 ¼ 2512, t2 ¼ 2421,

w ¼ 30, r ¼ 0:15. In the second case, the agent is much more manipulable, because it is

behind the world (also see text).
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short-term perturbations: we have been able to maintain the agent’s

activity by giving it regular false stimuli (illusions), that is by placing sam-

ples in spots where it could perceive them and withdrawing them once

the agent had come close.

Operational Coupling: Meta-adaptation and Self-regulation

Next, we proceeded to study the relation between the adaptation para-

meters (window w and rate r, cf. the section Cognitive=Representative

Level: Recursive Satisfaction and Adaptation) and the initial world value

pw(0). The system has been simulated for several values of w and r in sev-

eral initial world densities. The simulation results for three sets of adap-

tation parameters (quick, medium or slow adaptation) are given in

Figure 5.

Figure 5. Performance of the agent for three different parameter settings (pað0Þ ¼ 0:15).

Quick adaptation: w ¼ 10, r ¼ 0:3. Medium: w¼ 15, r¼ 0:2. Slow: w ¼ 20, r ¼ 0:1. (a)

pwð0Þ ¼ 0:1, (quick) t1 ¼ 562, (medium) t2 ¼ 914, (slow) t3 ¼ 1428, (b) pwð0Þ ¼ 0:5, (quick)

t1 ¼ 1705, (medium) t2 ¼ 1785, (slow) t3 ¼ 2504, (c) pwð0Þ ¼ 0:9, (quick) t1 ¼ 2540,

(medium) t2 ¼ 3017, (slow) t3 ¼ 3404.
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The quick adaptation is more operational than the medium one,

which is in turn more operational than the slow one (always according

to the first section’s criterion). However, the quicker the adaptation,

more fluctuations it shows, and the slower the adaptation, more delays

it shows. Furthermore, the same parameter setting gives different results

in different world densities: the difference in the results is reflected on

the shape of the curves. More particularly, the agent’s response to differ-

ent perturbations (the shape of the curve of pa(t)) differs according to the

free task parameter (pw(0)): for the same parameter setting, the agent

finishes its task more or less quickly according to the value of pw(0), that

is the duration of the interval between the moment of picking of the last

sample and the definitive return of the agent to the base is very variable.

It seems therefore that to ensure the agent’s operationality in different

worlds, we need to find a means to combine the operational advantages

of quick adaptation with the advantages of slow adaptation as far as

curve regularity is concerned. More precisely, we need a quick adap-

tation near the end (to terminate quickly), but a slow adaptation during

picking (to avoid fluctuations). We have then to find a way to stabilize to

the right parameter setting on-line. The solution is to have a range of

possible values for each of the two adaptation parameters and an

additional criterion for online value updating, that is for self-regulation

within the parameter range limits. Otherwise stated, we need a meta-

adaptation system.

Meta-adaptation has to affect the w and r parameters in a way that

adaptation becomes quicker when pcomp is sufficiently close to pa(t)

and slower when it is far from it. This meta-adaptation law translates

the fact that the world is more reliable when it is not much different from

the agent’s idea about it, otherwise the world should not be taken too ser-

iously. Some experiments with the opposite law (quicker adaptation

when the world differs much) have proved it to be counter-intuitive

and nonoperational, since it would make the agent more manipulable

in capricious worlds.

Meta-adaptation:

If jdiff j ð¼ jpcomp � paðt � wÞjÞ � fP ;

then quicker adaptation

r ! rmax ;w ! wmin

otherwise slower adaptation

r ! rmin;w ! wmax
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(1) Gradual mode:

Quicker r ¼ r þ rr
�ðrmax�rÞ; w ¼ w þ rw

�ðwmin�wÞ
Slower r ¼ r þ rr

�ðrmin�rÞ; w ¼ w þ rw
�ðwmax�wÞ

(2) Bang bang mode:

Quicker r ¼ rmax ; w ¼ wmin

Slower r ¼ rmin; w ¼ wmax

Figure 6 gives the results of applying the gradual meta-adaptation system

in three initial world densities; as is shown in the figure, the agent’s

response (the shape of the curve) is the same for all three exemplary den-

sities, or else the residue of mission duration after picking the last sample

is approximately the same in all three cases.

The curves of the adaptation window and rate for the experiment of

Figure 6 are given in Figure 7. We observe that the agent becomes more

adaptive (its adaptation is quicker) toward the end of sweeping: this is

due to the considerable decrease of paðtÞ that approaches 0, so that

the meta-adaptation criterion is satisfied and adaptation becomes more

and more rapid up to its maximum. For the same reason, the agent

remains only a little adaptive during sweeping=picking, which allows it

to better follow pwðtÞ and to make the curve of paðtÞ look fairly regular,

without the significant fluctuations=delays inherent in Figure 5.

Figure 6. Performance of the agent with a gradual meta-adaptation system for three initial

world densities, low (pwð0Þ ¼ 0:1), medium (pwð0Þ ¼ 0:5) and high (pwð0Þ ¼ 0:9)

(pað0Þ ¼ 0:15). t1 ¼ 739, t2 ¼ 2137, t3 ¼ 2724. (fp ¼ 0:1, wmin ¼ 10, wmax ¼ 20, rmin ¼ 0:1,

rmax ¼ 0:3, rr ¼ rw ¼ 0:2). The shapes of the curves are more irregular than that of

Figure 3 because adaptation is on average more quick here (recall that in Figure 3 we

had w ¼ 30, r ¼ 0:15). For instance, the sudden upward rise near the end of p ¼ 0:5 curve

is due to the discovery of the last isolated samples when the agent was almost finished and

the abrupt adaptation of pa accordingly.
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We have then examined the case of bang-bang meta regulation,

where r and w assume immediately their max or min values, as opposed

to the previous gradual mode of regulation which assumed convergence

toward max or min. Bang-bang meta regulation (Figure 8) is clearly

superior to gradual, since it is more operational in the end (compare ter-

mination values in Figures 6 and 8) and it shows less fluctuations in the

middle (compare curves in Figures 6 and 8). This observation confirms

the intuitive idea that the actual values of the adaptation parameters w, r

do not count much in themselves, but the decision about quick=slow

adaptation is all that is necessary. Therefore, when it makes sense to

adopt a slow adaptation scheme, it is not necessary to converge to the

slow values, but rather to use them right away, otherwise the system

might appear indecisive at times.

Other experiments have been carried out to explore the relative

importance of the adaptation rate and the adaptation window: the sys-

tem has been simulated in the case where meta-adaptation acts only

on the rate or only on the window. The first alternative led to a much

more operational system than the second alternative while still a little

less operational than the default case.

The meta-adaptation has subsequently been tested in the case of

exogenous adaptation at the first level: the results where analogous to

those obtained in the endogenous adaptation case (better operationality

and independence from the initial world density), but the disadvantages

in terms of manipulability have remained intact.

Figure 7. (a) The curve of the agent’s adaptation window w. Its value is normalized between

0 and 1, where 0 corresponds to the minimal value (wmin ¼ 10) and 1 to its maximal value

(wmax ¼ 20). (b) The curve of the agent’s adaptation rate r. Its value is normalized between 0

and 1, where 0 corresponds to the minimal value (rmin ¼ 0:1) and 1 to its maximal value

(rmax ¼ 0:3).
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MULTIPLE AGENTS

Population Effects

We have simulated the system with 1 to 100 agents without any additional

social functionality or action and we have recorded the task completion

time, i.e., the time from start of the task until picking of the last sample.

It should be stressed that we have adopted as termination point of the

experiment, the moment of picking of the last sample rather than the

moment of return of the last agent to the base, in order to eliminate the cog-

nitive problem of the previous section (How do they know they have finished?):

in the absence of other collective functionalities, this point is independent

of the cognitive properties of the agents, in other words the sweeping of

samples is parallel with the operation of the representational=cognitive

Figure 8. (a) Performance of the agent during the same experiment as in Figures 5 and 6,

but with bang-bang meta mode. t1 ¼ 627, t2 ¼ 1885, t3 ¼ 2628. (b) The curve of the agent’s

adaptation window w . Values are normalized between 0 and 1, where 0 corresponds to

minimal value (wmin ¼ 10) and 1 to maximal values (wmax ¼ 20). For visualization purposes,

the figure shows the moving averages of 10 cycles. (c) The curve of the agent’s adaptation

rate r. Values are normalized between 0 and 1, where 0 corresponds to minimal value

(rmin ¼ 0:1) and 1 to maximal values (rmax ¼ 0:3). For visualization purposes, the figure

shows the moving averages of 10 cycles.
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system (cf. the Introduction and SectionCognitive=Representational Level:

Recursive Satisfaction and Adaptation).

Our purpose has been to show that in the absence of explicit social-

ity the performance of the system does not improve in a super-linear

manner as is said in (Matarić 1992a) and (Arkin et al. 1993). Actually,

the dispersion mechanism is not in any sense self-catalytic, consequently

the only possible gain is the gain from parallelism, which can be linear at

best. Tzafestas (2001) shows that even with self-catalytic mechanisms,

the performance improves up to a saturation level: for very large popula-

tions, there is significant overcrowding.

Figure 9 shows the performance of the system and how this stabilizes

eventually without showing super-linear improvement: the figure gives

the results for 1 to 60 agents—performance rises quickly to a saturation

value at about 15 agents, while beyond 60 agents it remains stable. We

will then seek to accelerate the task execution (sweeping and return to

the base) by introducing an additional dispersion functionality or a regu-

latory cooperation mechanism.

The Role of Dispersion

Matarić (1992a) introduced in her explorer robots a dispersion behavior

to accelerate the field coverage and consequently the task execution

speed.

Dispersion Rule ðMatarić 1992b, p. 437Þ
If a robot is perceived, turn to avoid and advance for a fixed period of time.

Figure 9. Task completion time according to the number of explorer agents (pwð0Þ ¼ 0:5)

for three initial world densities, low (0.1), medium (0.5), and high (0.9).
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If multiple robots are perceived, turn away from their local centroid and

advance for a fixed period of time.

Matarić (ibid.) separated the dispersion from the other behaviors of for-

aging and flocking and used a mechanism of activation propagation to

arbitrate them; however, she wrote herself (Matarić 1994, p. 47) that this

configuration is perhaps not minimal.

During our first experiments (cf. see section Functional Level: Moti-

vational System) we sought a generic dispersion behavior, that would

yield an optimal spatial distribution of agents; optimal in the sense that,

leaving subsequently the agents forage locally and separately would be

enough. In an accompanying experiment, we have implemented disper-

sion as an activity during which the simulated agent moves at high speed,

whereas during foraging it moves at low speed (because it has to consult

its sensors regularly and attentively, while foraging). However, since the

critical task parameter is the spatial sample density that may take an arbi-

trary value, there will be eventually need for many round trips from the

base to the frontiers of the explored area. Then, on the one hand the dis-

tribution would be statistically perturbed in an asynchronous manner by

the agents heading to the base or returning from it, while on the other

hand the distribution would have to be continuously updated as a side-

effect of foraging. Moreover, such a dispersion behavior would only

make sense in a world that would be small with respect to the population

size, where the dispersion would ensure an efficient distribution.

To eliminate the arbitration problem between foraging and disper-

sion but also to allow a dynamic distribution, we introduced dispersion

as an instrumental action of foraging=hunting.

Instrumental Dispersion Rule

If there is no hunting stimulus:

If one or more agents are perceived, turn away from their local mass cen-

ter (i.e., choose as travel direction the one of minimal perceived agents

density).

Hunting Task with Instrumental Dispersion

If a hunting stimulus is detected,

then preferred hunting direction is the direction of the maximum perceived

stimulus density,

else if one or more agents are perceived (within a certain range)
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then preferred hunting direction is the direction away from their local mass

center

else preferred hunting direction is the current direction

(with a small probability of random change)

We simulated the system with and without dispersion for a range of

agent population sizes and the comparative results are given in Figure 10.

We observe that, contrary to intuitive predictions, dispersion is subopti-

mal: it slightly perturbs the performance of small populations and

becomes more favorable to populations of size greater than 10, giving a

performance of the same order than without dispersion. This result is

independent from dispersion range, i.e., from the maximal agent detec-

tion distance that triggers dispersion: we simulated the system for a dis-

persion range from 2 to 10 and its performance in both cases have been

found comparable to this without dispersion for large populations and

slightly inferior for small ones. Those two values have been chosen the

first inferior and the second superior to the foraging range, i.e., the maxi-

mal sample detection distance that triggers the agent’s appetitive behavior

(we have fixed this range to 3, cf. the section Functional Level: Motiva-

tional System). As foreseen, the sweeping performance is worse (better)

if the dispersion range is greater (smaller) than the foraging range,

because in the first case, if a sample exists between two agents, they

may disperse from each other and go away from it without detecting it.

This result is an indication that a reaction to a social stimulus outside

the agent’s motivational system does not constitute a true sociality and

does not increase operationality. Instead, the above dispersion behavior

Figure 10. Task completion time with and without dispersion according to the number of

explorer agents (pwð0Þ ¼ 0:5, dispersion range ¼ 3).
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is at best just part of an algorithm that makes problem solving more

efficient, which should be expected from its definition as instrumental

in the agent’s architecture—the agent has no real motivation to flee from

other agents. The behavior of the docker robot that forms robotic chains

(Drogoul and Ferber 1992), the modest cooperation mechanism of

Premvuti and Yuta (1990, 1993) and the architectures of cooperative

or coordinated navigation (Wang 1991, Noreils 1993, Matarić et al.

1995) do not constitute a sociality either. In all those cases, the coopera-

tive behavior involved is just an additional behavior that speeds up the

task execution without intervening explicitly in the agents’ motivational

system. To use Matarić’s (1992a) terminology, this is an ‘‘informed’’

agents coexistence, rather than an ‘‘intelligent’’ coexistence that would

show as a differential compromise between the various behaviors, i.e., it

would intervene at the motivational system level. Thus, it will make sense

to talk about sociality whenever stimuli of social origin are considered by

the motivational system.

Sociality Models (Cooperation Mechanisms)

Having eliminated dispersion for lack of operationality and having

adopted as a starting point that sociality has to intervene at the agents’

motivational system level, we sought an additional mechanism that

would modify the agents’ motivation taking into account the motivations

of the other agents. To this end, it is necessary to introduce motivation

emitters and detectors; given that motivations take continuous real

values, radio signal sensors would be sufficient for a distributed robotic

implementation. This sociality is reactive in the sense that the agents have

not discovered it or learned it by themselves, nor have they decided that it

would be better to share their needs, but it is the designer of the system

that endowed them with the necessary mechanism to do so.

What motivation do the agents have to exchange? Obviously, it can

neither be the foraging=hunting nor the homing motivation, but the

supermotivation of pa. We are therefore looking for new formulae of

computation=adaptation of the following type:

Motivation Containing a Sociality Component

paðtÞ ¼ f ðpaðt � wÞ; pcomp; psocÞ

where pcomp is computed as in the section Cognitive=Representative
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Level: Recursive Satisfaction and Adaptation and psoc is the perceived

mean of other agents motivations.

We have implemented and compared four sociality models:

(1) default smooth sociality, (2) relative sociality, (3) cooperative social-

ity, and (4) tit-for-tat sociality. The first model of reactive sociality is

smooth sociality (its name will be explained toward the end of this

section), where the agent acts as in the asocial case, starting from the

social value psoc.

Smooth Sociality

diff ¼ jpcomp � psocj;
paðtÞ ¼ psoc þ diff �r

If diff � fp; quicker adaptation;

otherwise slower adaptation

In relative sociality, the estimated sample density is given by the for-

mula pest ¼ a�psoc þ ð1� aÞ�pcomp, where psoc includes the agent’s own

value; this formula means that the estimate of the world density is con-

sidered to be somewhere between the individually perceived (pcomp)

and the mean of agents’ beliefs. The a parameter denotes the relative

weight of the individual value and the estimated one. The rest of the

model is identical to that of the solitary explorer agent.

Relative Sociality

pest ¼ a�psoc þ ð1� aÞ�pcomp; diff ¼ jpest � pj; 0 < a < 1

p ¼ pþ r�diff

If diff � fp; quicker adaptation;

otherwise slower adaptation

The third model is cooperative sociality, where every agent considers

that the actual value of the world density is the mean between the com-

puted density and the mean agents density (we consider that the truth

is the average of the two values, the personal estimate and the social

standard).

Cooperative Sociality

pest ¼ ðpsoc þ pcompÞ=2 ða ¼ 0:5Þ; diff ¼ jpest � pj;
p ¼ pest
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If diff � fp; quicker adaptation;

otherwise slower adaptation

Finally, tit-for-tat sociality is a little more complicated than the previous

two models: it is like cooperative sociality as far as world density esti-

mation is considered, but it has furthermore a threshold used by the

tit-for-tat mechanism to detect cooperation. Adaptation is thus a side-

effect of cooperation or defection.

In a first nonoperational version of tit-for-tat sociality, the agent

only updates its estimate during cooperation detection. On the contrary,

in the second version, on cooperation the agent adopts as new estimate

the new reference value ðpestÞ, otherwise it adapts to that value according

to the same proportional law as before, i.e., the pa update law is different

for cooperation and defection, but the agent adapts continuously.

Tit-for-tat Sociality (version 1)

pest ¼ ðpsoc þ pcompÞ=2 ða ¼ 0:5Þ; diff ¼ jpest � pj
If diff � fp;

p ¼ pest and quicker adaptation;

otherwise slower adaptation

Tit-for-tat Sociality (version 2)

pest ¼ ðpsoc þ pcompÞ=2 ða ¼ 0:5Þ; diff ¼ pest � p

If jdiff j � fp;

p ¼ pest and quicker adaptation;

otherwise p ¼ pþ fp
� sign ðdiff Þ

and slower adaptation

The problem with the first tit-for-tat sociality model has been that it was

often leading to a stabilization of the whole population to a value of esti-

mated density such that no agent would then modify its own estimate

value and the population’s activity would be maintained forever despite

the exhaustion of the mineral sources; Huberman and Glance (1993)

and Nowak and May (1992) presented simulation results showing pre-

cisely that spatial diversity and asynchronicity in certain distributed sys-

tems lead to global configurations either chaotic or uniform. To remedy

this problem, we investigated several extensions to the cooperation

criterion: noise (around 0.1), generosity in the sense of a nonzero

probability of cooperation on detection of defection (around 0.1) and
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self-regulation either of the selfishness a (around 0.5) either of the toler-

ance=threshold T (around 0.5). The self-regulation of the selfishness or

the tolerance was operational as long as the meta-level (i.e., the

cooperation criterion) remained cooperative, in the sense that detection

of cooperation should induce an increase rather than a decrease of tol-

erance and a decrease rather than an increase of selfishness. In all cases,

tolerance regulation has given a better performance than selfishness

regulation (it looks that the critical parameter of the quantitative tit-

for-tat model is tolerance—cf. additional results in Tzafestas 1995),

but the need for a degree of noise or generosity has not been entirely

eliminated. The reason appears to be that all those variants of the tit-

for-tat model rely on an inactive defection (there is no action and thus

no adaptation if the world is considered hostile). However, it has been

argued by several authors (Ackoff and Emery 1972, Varela 1980, van

Gelder and Port 1995, Tzafestas 1995) that the essence of autonomy,

and for what concerns us here of operationality, is the continuous change

of response to the world. This brought us to the actual second version of

tit-for-tat sociality that defines an action for defection as well as for

cooperation and that bypasses therefore that alienation problem (social

stabilization, as discussed above).

The first implementation of all those models relied on localized

interactions: the perceived mean of other agents’ motivations was only

concerning the agents inside a limited zone (a circular disc around the

agent with a certain perception range, either fixed or varying across

agents). This implementation yielded results hardly different from those

without sociality, despite drastic quantitative improvement during the

first few simulation steps. Looking closer, we observed that, since

the world size (25�25) was relatively important with respect to the popu-

lation size, the agents were only really socializing during the first few

simulation cycles when they were dispersing away from the base and

from one another. From that point on, their trajectories were diverging

and their returns to the base were statistically nonsynchronized, so that

practically they were meeting each other all too rarely.

The second implementation of the sociality models relied on global

interactions, i.e., on a propagation of individual motivations over the

whole population. We have also implemented several variants of the four

sociality models according to whether social adaptation is synchronous

with individual adaptation or parallel (in which case the two adaptation

operations take place independently and each at its own pace) or
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probabilistic (in which social adaptation takes place statistically with a

certain probability). The last two variants have been found nonopera-

tional, in that they have practically induced no performance difference

with the case of asociality. The only operational possibility has remained

the synchronous adaptation given before. The relative sociality model

has been eliminated early in the experimentation process for lack of

operationality as well: actually, relative sociality gives an estimate of

the world density that has too much inertia with respect to the agents’

activity and hence with respect to the true evolution of the world density

(this result has been verified in the complete range of values for the para-

meter a from 0 to 1: the problem remained and owed its existence to the

presence of the proportional factor r�diff ).

Figures 11a–c give the comparative results of the application of the

default asocial model (i.e., that of the section Cognitive=Representative

Level: Recursive Satisfaction and Adaptation) and the four social models

in different world densities. The curves show clearly the performance

improvement with sociality; tit-for-tat sociality is more robust and

slightly less efficient than cooperative sociality in all cases (with

efficiency differences being greater in lower world densities), smooth

sociality comes next and relative sociality is generally much more inef-

ficient compared to asociality.

Discussion

It is noteworthy that the transition from the solitary explorer agent’s

motivational system to that of the social explorer agent (any of the adap-

tation formulae of this paragraph, except the smooth one) is not continu-

ous: here pest depends on pcomp as well as on psoc. The system has been

simulated in the case of a single social agent in the world (in which case

psoc ¼ p) and it has been found that it is not operational (its adaptation is

too quick and irregular); consequently, an agent has to be able to recog-

nize when it is alone and when it is not, in order to execute the corre-

sponding program. We call this property the social leap. This

observation explains the name of the smooth sociality model, which is

the same for any number of agents.

The light superiority of tit-for-tat sociality with respect to coopera-

tive sociality is due to the variation of adaptation velocities. We simulated

the system with and without diversity in initial conditions ( pað0Þ), with
and without diversity in tolerance ( fp) and with and without diversity in
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adaptation parameters. Keeping initial conditions and adaptation para-

meters uniform and constant in both cases, but with a tolerance diver-

sity, tit-for-tat sociality has been proven slightly more operational than

cooperative sociality. Why? It appears that the tit-for-tat agents system

generates diversity, since all agents do not do the same thing at the same

time and this diversity is responsible for the performance improvement

(for the operational role of diversity in populations, see for example

Nowak and Sigmund 1992, Lumer and Faieta 1994, Durrett and

Levin 1994). However, this improvement is only marginal, since the

acceleration or deceleration of adaptation does not rely on a true

cooperation=defection criterion. The tit-for-tat agent is an essentially

cooperative agent; it only modifies its adaptation dynamics, but it is

not really defective (it has no real interest in being so, since being

cooperative is not really detrimental). The need to defect arises once

Figure 11. Asociality vs. different types of sociality in three world densities. 10 agents,

(a) pwð0Þ ¼ 0:1, asociality t ¼ 336, relative sociality (a ¼ 0:5) t ¼ 330, cooperative sociality

t ¼ 127, tit-for-tat sociality t ¼ 169, smooth sociality t ¼ 184. (b) pwð0Þ ¼ 0:5, asociality

t ¼ 518, relative sociality (a ¼ 0:5) t ¼ 639, cooperative sociality t ¼ 269, tit-for-tat social-

ity t ¼ 279, smooth sociality t ¼ 345. (c) pwð0Þ ¼ 0:9, asociality t ¼ 631, relative sociality

(a ¼ 0:5) t ¼ 743, cooperative sociality t ¼ 374, tit-for-tat sociality t ¼ 394, smooth

sociality t ¼ 475.
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we introduce factors that may make cooperation detrimental to the

agent itself, for instance if we introduce cheating agents. We experi-

mented with a proportion of agents that cheat as far as the need to com-

municate is concerned: more particularly we have defined agents that

always emit the same constant value or a perturbed value (mutated with

a noise probability) or a completely random value. In all cases, tit-for-

tat agents have been clearly more operational than cooperative ones.

However, since cheating agents do not have any particular will to cheat

(it is as though their emitters were defective), there is no second social

force (the only force present is the sweeping force) and so there is no

need for compromise and sociality regulation. To show the need for

sociality regulation, it would be necessary to modify the social problem

so as to include a second social force, for example by defining two

agent types, one that would seek to sweep the place and one that

would seek to litter, or by introducing an additional social behavior such

as resource sharing (as in Steels (1995) andMcFarland and Spier (1997)).

As the problem is formulated, there is no need for sociality regulation,

because there is no free task parameter intervening in sociality.

VARIATIONS OF THE PROBLEM

Exploration of a Remote Region

Variations of the sweeping problem or extensions to conceptually similar

ones may be envisaged. One such variation is the exploration or sweep-

ing of a remote region in space, for example the exploration of the bot-

tom right area in Figure 12. Straightforward application of the agent

model to this problem is possible, but the following issues should be

taken into account:

. The agents should have an additional sensing facility, allowing them to

detect when they are in the target region and, if not, to compute an

orientation toward it. If they lack such a facility, then the random

background movement may not ensure complete coverage of the target

region, because the agents may spend much time in other regions and

terminate prematurely.

. If the area surrounding the remote region is empty of samples, then

with appropriate parameter tuning the remote region may be

completely explored and all samples exhausted.
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. If the area surrounding the remote region is not empty, then the remote

region may not be totally explored and samples may not be exhausted.

This is because in many cases the agents tend to get stuck in the

borders of the remote region, due to detected samples outside of the

region.

. To resolve this problem, we may deactivate the hunting sensor (or set it

to a low range value such as 1) when the agents are outside the target

area. This gives a much greater probability of proper task termination,

still running the risk of missing a few remote samples, as shown in

the figure. Note that when the surrounding area is not empty, an empty

corridor from the base to the border of the region emerges, as shown in

Figure 12.

Agricultural Fields

Another variation of the sweeping problem is the crop collection prob-

lem of agricultural robotics, where the swarm of agents enters the field

by an edge and the shape of the field may be irregular, for example it

may be rectangular as is shown in Figure 13. This environmental setting

Figure 12. Exploration of a remote region (bottom right region). End state.

REGULATION PROBLEMS IN EXPLORER AGENTS 367



induces a nonconstant task speed (i.e., a nonconstant sample picking

speed), because successive trips to sample sources take longer and longer

since the closer ones tend to get picked too quickly. This situation is

operationally equivalent to usual circular or square worlds of very large

size (for example, square worlds of size 100� 100). In such cases, the

parameter tuning of the system should be based on the worst case scen-

ario, i.e., on the largest distance to be traveled. The resulting curve for pa
will not be bell-like as was the case in the second and third sections, but

more or less irregularly decaying (see Figure 14).

DISCUSSION

Figure 15 gives the result of applying the meta-adaptation law for differ-

ent initial conditions (combinations of pað0Þ and pwð0Þ). The figure

Figure 13. Exploration of a long region (15� 30) with the entry on the smaller edge (top) by

4 agents.
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invites the observer to think that the initial conditions play no role in the

system’s operationality, because the evolution of the curves after about

300–400 cycles is the same for all parameter settings (the three curves

of each figure converge). Actually, a pair of values ( pað0Þ, pwð0Þ) will

Figure 14. Coevolution agents-world for the world of Figure 13, at high density (pw ¼ 0:9).

Figure 15. Performance of the agent for different initial conditions (pað0Þ; pwð0Þ). (a)

pwð0Þ ¼ 0:1. Lower curve: pað0Þ ¼ 0:1, t1 ¼ 807. Middle curve: pað0Þ ¼ 0:5, t2 ¼ 772.

Upper curve: pað0Þ ¼ 0:9, t3 ¼ 674. (b) pwð0Þ ¼ 0:5. Lower curve: pað0Þ ¼ 0:1, t1 ¼ 1844.

Middle curve: pað0Þ ¼ 0:5, t2 ¼ 1698. Upper curve: pað0Þ ¼ 0:9, t3 ¼ 1836.

(c) pwð0Þ ¼ 0:9. Lower curve: pað0Þ ¼ 0:1, t1 ¼ 2576. Middle curve: pað0Þ ¼ 0:5,

t2 ¼ 2835. Upper curve: pað0Þ ¼ 0:9, t3 ¼ 2445.
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translate itself to a variable paðT0Þ, where T0 is the moment of picking the

last sample ( pwðT0Þ ¼ 0); the study of diversity of ( pað0Þ, pwð0Þ) is hence
equivalent to the study of diversity of pað0Þ in an empty world

( pwð0Þ ¼ 0). We have thus measured paðT0Þ for the three typical pwð0Þ
values (0.1, 0.5, 0.9). Results are given in Table 1 for meta-adaptation.

The results show that the value of paðT0Þ remain bounded below 0.2, with

best match a little below 0.1.

Next, Figure 16 shows the performance of the agent for the meta-

adaptation and the medium adaptation cases in an initially empty world.

It may be seen that performance is almost linear in the meta case, what

allows us to easily deduce the value of pað0Þ from the completion time

alone. More generally, we can deduce the value of pwð0Þ from completion

time as follows:

ttotal ¼ T0ði:e:; the time for pw to go from pwð0Þ to 0Þ
þ T1ði.e., the time for pa to go from paðT0Þ to 0Þ

The value of T0 is a function of just pw(0), while the value of T1 is a func-

tion of just pa(T0). Table 1 shows that pa(T0) is between 0 and 0.2, with

maximum likelihood to be a little below 0.1. Figure 17 gives T0 as a func-

tion of pw(0) and T1 as a function of pa(T0). Because both functions are

linear ðT0 ¼ 400þ 2400pwð0Þ; T1 ¼ 90þ 190paðT0ÞÞ;T1 may be given

the average value of 180 and the value of pw(0) may be linearly approxi-

mated as

pwð0Þ ¼ cðttotal � tcÞ; tc ¼ 580; c ¼ 1=2400

Table 1. pa(T0), where T0 ¼ moment of last sample picking, in various (pw(0), pa(0)) settings

pw

pa 0.1 0.5 0.9

0.1 0.13 0.06 0.07

0.2 0.04 0.11 0.10

0.3 0.05 0.08 0.06

0.4 0.04 0.07 0.08

0.5 0.07 0.06 0.11

0.6 0.06 0.07 0.07

0.7 0.09 0.07 0.02

0.8 0.07 0.10 0.08

0.9 0.11 0.06 0.15
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The above formula allows us both to predict the performance of the sys-

tem, i.e., for a given ttotal compute pw(0), and to design a system that will

achieve a given level of performance, i.e., to design a system whose (c, tc)

parameter pair gives a certain ttotal for a certain initial pw(0). Figure 18 is

the same as Figure 17, but for an agent having hunting range

¼ 2; r 2 ½0:05; 0:2�. In this case we can verify that T0 ¼ 500þ
2500pwð0Þ; T1 ¼ 100þ 400paðT0Þ; thus tc ¼ 800 and c ¼ 1=2500. Care

has to be taken however of very sparse worlds, i.e., worlds having low

initial pw(0), because pa(T0) may vary significantly and take extreme

values, even exceed 0.2 in some cases (for example in Table 1,

Figure 16. Performance of the agent in an empty world (pwð0Þ ¼ 0). (a) Medium adaptation.

Lower curve: pað0Þ ¼ 0:1, t1 ¼ 334. Middle curve: pað0Þ ¼ 0:5, t2 ¼ 440. Upper curve:

pað0Þ ¼ 0:9, t3 ¼ 476. (b) Meta adaptation. Lower curve: pað0Þ ¼ 0:1, t1 ¼ 224. Middle

curve: pað0Þ ¼ 0:5, t2 ¼ 466. Upper curve: pað0Þ ¼ 0:9, t3 ¼ 562.

Figure 17. (a) Completion time T0 (i.e. time for pw to go from pw(0) to 0) as a function of

pw(0). The x-axis represents the range of values [0, 1]. Completion time evolves almost lin-

early with pw(0). (b) Completion time T1 (i.e. time for pa to go from pa(T0) to 0) of an agent in

an empty world (pwð0Þ ¼ 0) as a function of pað0Þ. The x-axis represents the range of values
[0, 0.2]. Completion time evolves almost linearly with pað0Þ.
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paðT0Þ ¼ 0:13 for pað0Þ ¼ pwð0Þ ¼ 0:1). This may be explained because

for low initial pw(0), T0 obtains a value close to its minimum, which

may belong to the range of values of T1. An alternative explanation is

that the system does not have sufficient time to become initial value inde-

pendent. As has been shown in the beginning of this section for Figure 15

the necessary time is around 300–400 cycles for the default case of Fig-

ure 17, and should be even greater for the agent of Figure 18 that adapts

slower on average.

As a conclusion of the above discussion, the analysis of any such

explorer system may be done with reference to the boundary conditions

pwð0Þ ¼ 0 and pað0Þ ¼ 0. The agent’s individuality that is manifest in its

responses to the various perturbations is precisely its response to the bound-

ary conditions. In other words, and thanks to behavioral linearity, to isolate

the difference between two agents having different behavioral and adap-

tation parameters, it is sufficient to study them in this degenerate case

instead of studying them exhaustively in all possible perturbation cases.

CONCLUSION

In this paper we studied the control system of an explorer-sweeper agent

that has to visit and exhaust all sources of interest within a delimited area.

It has been shown that an agent with two tasks that express coupled moti-

vations, a recursive motivation and representation of the critical free task

Figure 18. Agent having hunting range ¼ 2, and r 2 [0.05, 0.2]. (a) Completion time T0 (i.e.,

time for pw to go from pw(0) to 0) as a function of pw(0). The x-axis represents the range of

values [0, 1]. Completion time evolves almost linearly with pw(0). (b) Completion time T1

(i.e., time for pa to go from pa(T0) to 0) of an agent in an empty world (pwð0Þ ¼ 0) as a func-

tion of pað0Þ. The x-axis represents the range of values [0, 0.2]. Completion time evolves

almost linearly with pað0Þ.
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parameter constitutes a simple solution to the sweeping problem. The

state of the world in which the agent is situated is a source of persistent

perturbation for the agent, who has to modify its dynamics of interaction

with the world in order to resolve his (our) problem better. The modifi-

cation of the interaction dynamics concerns the adaptation rates of the

agent and has to be endogenous, homeostatic, and bang-bang in order

to ensure the best operational coupling between agent and world.

However, and since the agent has fixed motivations, representations

and ways of coupling with the environment, we might say that it is not

autonomous in the sense of being self-determined, but it acts as our con-

troller for the sweeping problem. The individuality of that controller

is seen in its response to the boundary conditions pwðtÞ ¼ 0

and paðtÞ ¼ 0, that is the study and analysis of the controller may take

place outside a particular environment and a particular interaction con-

text. Thus, the agent is autonomous in the sense that it does not depend

on the interaction, but it acts thanks to internal designed motivations,

according to internal laws and independently of its environment that

only perturbs him temporarily. Table 2 summarizes our results for the

case of the solitary agent.

The sweeping problem has also been studied in the case of multiple

agents instead of a single agent. First, we studied the performance of the

multiagent system as a function of the population size and we showed

that the performance comes to a saturation level. Next we studied the

effect of the introduction of an additional dispersion possibility as an

Table 2. Recapitulation of single agent case

The problem Control system of an agent needing to know the critical parameter of

the problem it solves and whose value denotes the state of progress

of the solving process

The application Solitary explorer agent

The solution Motivational system (hunting and homing motivations)

Representational variable

Estimation of the variable (adaptation)

Self-regulation of the dynamics of interaction with the world (adaptation

parameters)

Issues . Endogenous versus exogenous adaptation

. Gradual versus bang-bang dynamics

. Operational coupling (meta-adaptation)

. Insensibility to initial conditions

. Predictability of performance
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instrumental action for foraging=hunting. This time, we observed a slight

decrease in efficiency, due to the instability of the induced dynamic spa-

tial structures. The implementation and the comparison of several mod-

els of reactive sociality led us to the conclusion that we need a tit-for-tat

sociality of the type social variable sharing. We also presented other

assorted observations, the social leap phenomenon, the role of diversity

and the behavior of the system in presence of cheating agents. Table 3

summarizes our results for the case of the social explorer.

In the future, we purport to extend this basic behavioral system to

include an energy managing task, that will drive the agent(s) to recharge

at the same or at a different base, so as to study potential new intricacies

of the motivational and the adaptation system. Yet another application

envisaged is the sweeping for more than one different types of object,

where inspiration will be drawn from usual ant clustering (Martinoli

et al. 1999) and division of labor (Théraulaz et al. 1998) approaches

and results. Finally, we plan to model and study populations of two

behaviorally mutually exclusive agent types.
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Matarić, M. J. 1992a. Minimizing complexity in controlling a mobile robot popu-

lation, Proceedings of the 1992 IEEE International Conference on Robotics and

Automation, Nice, France, May, pp. 830–835.
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