
Extra-sliding puzzles:
Experiments in Cognitive Modeling and

Representation for Problem Solving

Elpida S. Tzafestas

1 Institute of Communication and Computer Systems

National Technical University of Athens
Zographou Campus

15773 Athens, Greece
brensham@softlab.ece.ntua.gr

Abstract. We are studying the well known problem of the sliding puzzle or N-
puzzle and we are modeling a number of consecutive extensions and their
solution based on the known algorithmic solution. The usual approach to date
has been to find optimal solutions (move sequences) to the N-puzzle with the
aid of sophisticated special-purpose search methods. Our goal is to study it
from a bottom up perspective and to do cognitive modeling of the scalable
algorithmic solution that finds suboptimal move sequences but that can do so
consistently for a large number of extensions with practically no increase in
polynomial complexity. This approach claims both to model for fundamental
cognitive skills that are exerted on top of existing intelligent problem-solving
methods as well as to identify modules of reasoning that should be included in
any scalably intelligent system.

Keywords: Sliding puzzle, cognitive modeling, problem solving, problem
decomposition, planning, representation, mental rotation.

1 Introduction

The usual artificial intelligence approach to puzzle solving consists in describing and
representing the puzzle knowledge in a way that allows one of the general search
methods to apply, possibly modified appropriately in order to exploit the
particularities of the puzzle [1]. The application of the general or modified search
method then yields optimal or near-optimal solutions, i.e. move sequences that drive
the puzzle from its initial state to the final solved state. The axiom behind this
approach is that a general method for (intelligent) problem-solving should be able to
solve all imaginable problems: thus, heuristic search should be able to solve all those
problems that like puzzle or perfect knowledge games involve reasoning on a
sequence of states or moves.

This approach is not however universally accepted. Doubts were cast even in the
early days of AI ; for example, David Marr [2] stated that “A result in Artificial
Intelligence thus consists in the isolation of a particular information processing

problem, and the statement of a method for solving it. Some judgement has to be
applied when deciding as to what constitutes a method – something based on
exhaustive search for chess would clearly not qualify. […] The important point is that
when a method has been established for a particular problem it never has to be done
again, and in this respect a result in A.I. behaves like a result in mathematics or any
of the hard natural sciences”. The alternative to exhaustive or heuristic search is to
model exactly what the human puzzle solver does, i.e. to do human cognitive
modeling and reproduce the human subject’s problem-solving behavior as much as is
possible, instead of relying on a general but artificial method to solve the problem.
Apart from the obvious human modeling target, cognitive modeling of this sort may
also allow the reuse of its results to solve other analogous problems.

Our belief is that many of our problem solving skills involve a number of discrete
or “geometric” manipulations of knowledge that is either basic or acquired through
instruction and experience with other more or less similar problems. Thus our
medium term goal is to identify the kinds of “bricks” and “glue” that may or should
be used to build scalable artificial intelligence systems, i.e. to solve increasingly
complex problems with minor or no increase in complexity. To this end, we are
studying a number of well-known puzzles and how a human problem solver scales
his/her behavior to more complex cases by exploiting the knowledge from previous
simpler cases.

In this article we are studying the sliding puzzle (N-puzzle) for which a search-
derived optimal solution exists for small values of N [3] as well as an algorithmic
suboptimal solution. We are adopting the latter and we are scaling it to a number of
more complex versions by adding specific skills at each level or “simple heuristics
that make us smart” [4]. The algorithmic solution has so far been disregarded by AI
for not producing optimal solutions. However, for human-level intelligence,
evaluation of intelligence is almost never done on the basis of optimality. In the case
of puzzles, all human competitions center around the speed of solution, which given
the physically limited human dexterity translates mostly as reasoning speed to find
one solution quickly enough. The quest of the optimal solution is a completely
different mathematical problem, generally uninteresting from an every-day bounded
resources point of view.

Our study serves as an illustration of what it should take to devise and solve more
complex and difficult problems without involving higher complexity skills, i.e. by
representation manipulation and problem decomposition. Our claim is then that
human-level intelligence involves precisely those skills that tame and deconstruct
complexity rather than those that ensure optimality and our aim is to both identify the
skills and develop ways of incorporating them to real-world problem solving and to
practical AI programming.

2 NM sliding puzzle

The original N-puzzle (which is an instance of a sliding puzzle) is defined as follows:
A square of KxK tiles is given (N=K2) where each tile is numbered from 1 to N as in
fig. 1 (right). The last tile is missing and instead there is a blank position where an

adjacent tile may slide into. A random configuration is provided as initial state and the
solution of the puzzle consists in finding a sequence of moves that brings the puzzle
to the solved position. From here on and for the sake of simplicity, we will call N-
puzzle the puzzle with NxN positions.

2.1 Basic algorithm

The algorithmic non-optimal solution is the following:

Solve the top row.
 {Foreach tile in turn (left to right): if
 righter than its target position move up and
 left until position is found, else move right
 to wall, then up and left}
Solve the remainder of the left column.
 {Foreach tile in turn (top to bottom): if
 lower than its target position move left and
 up until position is found, else move down to
 wall, then left and up}
The order of the puzzle is now reduced by 1. Recurse
as necessary (N-1 puzzle).

Figure 1 shows an example run. The complexity of the algorithm is O(N3), because
each tile needs at most 2N steps to be correctly placed.

Fig. 1. Initial state, an intermediate state, final state. The tiles that are currently correctly placed
are heavily marked in blue, while the current position of the blank is marked in red. One can
clearly see the progression from top row, left column toward bottom and right.

2.2 NM Puzzle

The puzzle formulation as well as all solutions (search-based and algorithmic alike)
actually do not depend on the puzzle being an exact square and can work equally well
conceptually on a NxM puzzle with different lengths for the edges. This is the
definition we have adopted in what follows (the square puzzle is a special case of the

NM puzzle). Figure 2 shows an example run. The complexity of the algorithm in this
case is O(X3), where X=max(N,M), because each tile needs at most M+N steps to be
correctly placed.

Fig. 2. Initial state, an intermediate state, final state.

2.3 Corner rule

The only intricate case in the algorithmic solution of the N puzzle or the NM puzzle is
the handling of the last two tiles in a row (or column) because once the penultimate is
correctly placed, the last one cannot be placed without disturbing the previous one. To
solve this anomaly, a special pre-planned sequence is applied. First, we bring the
penultimate and ultimate tiles to the positions shown below and we apply the
sequence shown for the end of rows (a similar rule is used for the end of columns):

Fig. 3. Sequence of moves that solves the corner anomaly.

2.4 Lessons

While we have not touched on the issue of how the initial algorithm was found, we
observe that it scales directly to the generic NxM puzzle case. We also observe that
for a human problem solver, the directive to solve the top row and left column first
and then the rest of the puzzle recursively is not sufficient. One has to discover a
sequence of moves that solves the corner anomaly, whereas a search-based method
does not distinguish betwwen these moves and the rest of the moves. This is an
indication, that the original geometric knowledge and inspiration to solve the puzzle

recursively has to be combined with some local search and planning method that is of
an order tractable for a human mind. Inspection of the execution of the algorithm has
also shown that the machine solver exploits unexpected opportunities (configurations
that were expected later during solving) more easily than a human user. This is
because the human generally focuses on the current step of the algorithm s/he is
executing and may miss these opportunities. On the contrary an experienced human
solver can find on the fly small efficient if not optimal sequences for certain limited
positions s/he encounters and behaves thus “creatively” in front of some novel local
opportunities.

3 Any corner sliding puzzle

The NM puzzle can be solved without a complexity penalty for the case of a blank
that is not the NM-1 tile but one of the other three corners (tiles 1, M or NM-M+1).
The only difference resides in the orientation of the puzzle; whereas for a human
problem solver the handling of the puzzle will be straightforward once he starts
thinking about it as a rotated one, a search-based method would in general involve a
more intricate reinitialization of the state space reflecting the mental rotation.

3.1 Rotation rule

The mental rotation rule can be easily implemented in the artificial puzzle solver as an
embedded renumbering of the tiles, the solving algorithm remaining intact. Figure 4
shows an example run.

Fig. 4. Initial state, an intermediate state, final state. The target blank position is heavily
marked in green. One can clearly see the (rotated) progression from bottom row, left column
toward top and right.

3.2 Lessons

To implement the mental rotation rule one needs both recursion and re-representation.
Change of representation (here: encoding) is important and is one of the tools that
should come in the problem solver’s bag. Note also that any one of the tools has to
have an easy way to be integrated with others. Part of the criticism against traditional
symbolic AI approaches is targeted toward the difficulty of implementing such
“declarative” pattern-oriented rules within AI problem solvers. While the criticism
may be theoretically correct, we believe that the difficulty is not conceptual, but rather
it stems from the inherent limitation of usual symbolic, logic or, worst yet, procedural
programming languages to handle directly such relational pattern-oriented
information. The issue of the direct relation between image representations and
cognition has been also put forth by Aisbett and Gibbon [5].

4 Any position sliding puzzle

The obvious extension of the NM puzzle is to have an arbitrary blank position. In this
case, the human user mentally decomposes the puzzle into the part that can be directly
solved to leave a smaller possibly rotated puzzle that can be solved as before. Again, a
human problem solver would handle the puzzle in a straightforward recursive way,
while a search-based method might involve another reinitialization of the state space
reflecting the new blank position.

4.1 Decomposition rule

The solver first easily determines the minimum number of rows and columns to be
solved before reducing the remaining of the puzzle to a regular puzzle with a corner
blank. The rest of the algorithm is as before and the complexity of the solver does not
change. Figure 5 shows an example run.

Fig. 5. Initial state, two intermediate states, final state. One can clearly see the two steps
involved: first the filling of a few rows and columns from the top and the left, respectively, then
the (rotated) progression from bottom row, right column toward top and left.

4.2 Lessons

To implement the decomposition a solver uses a criterion for decomposition that leads
recursively to a puzzle it can solve. In the general case, we would expect human-like
puzzle solvers to try various criteria to find out which one works -or works best- in
order to develop next level algorithms. These criteria are unlike the ones used in

pattern database approaches [6] that seek to discover the optimum by introducing
search “cuts” rather than our tractable routes to non-optimal quick solutions.
Decomposition thus should be a cognitive “heuristic” appropriately implemented
within a problem solver that serves not optimality but tractability [7].

5 Multi-objective sliding puzzle

The final extension of the NM puzzle is to have many arbitrarily placed blanks. In this
case, the human user mentally plans the order of placement of blanks and decomposes
the puzzle to parts that can be directly filled (rows and columns possibly with blanks)
and at least one part that is a puzzle with an arbitrary or corner blank. Once more, a
human problem solver decomposes very easily, while a search-based method would
involve many reinitializations of the state space reflecting the various blanks
configuration.

5.1 Rule for two blanks

The solver first easily determines the blank with the minimum euclidean distance to
any of the corners and fills this part of the puzzle (including the corresponding row or
column of the selected blank) reducing the remaining of the puzzle to a regular puzzle
with an arbitrary blank. The rest of the algorithm is as before and the complexity of
the solver does not change. Figure 6 shows an example run.

Fig. 6. Initial state, three intermediate states, final state. One can clearly see the three steps
involved: first the filling of the left row that has a blank, then the filling of a few rows and
columns from the bottom and the left, respectively, finally the (rotated) progression from top
row, right column toward bottom and left. This solution only involved 2787 moves. Note that
because the puzzle’s initial configuration is not derived through tile shuffling but through
random tile initialization, it is possible to come up with a variant of the (unsolvable) Loyd’s
puzzle [8], which is the case in this run.

5.2 Generalization

It is possible to extend this problem solver to accommodate larger blank sets. We
have implemented a generalized version of the solver that solves for an arbitrary (but
small, on the order of N or M) number of blanks, leaving for the future the case where
the blanks are so many that it is easier to manipulate the numbered tiles within the
blank space and direct them to their positions than to plan the solution as before. In
this case as in the two blanks case, the human user mentally plans the order of

placement of blanks and decomposes the puzzle to parts that can be directly filled
(rows and columns possibly with blanks) and parts that are puzzles with an arbitrary
or corner blank. Once more, a human problem solver decomposes very easily, while a
search-based method would involve several reinitializations of the state space
reflecting the various blanks configurations, and this recursively in every successive
number of blanks reduction. The solver decomposes recursively as in the case of two
blanks and the complexity of the solver does not change. Figure 7 shows an example
run for four blanks.

Fig. 7. Initial state, an intermediate state, final state. This solution only involved 8778 moves.

5.3 Lessons

To implement the decomposition for an arbitrary (small) number of blanks, a solver
uses a recursive criterion for decomposition that leads recursively to smaller puzzles
until it finds puzzles with a unique blank. In the general case, we expect human-like
puzzle solvers to adopt the same criterion as in the previous case (any position blank).
However, given the multitude of decomposition and planning possibilities available, a
real human subject does not always choose the optimal criterion, but choices are
differentiated across subjects and sometimes for the same subject across runs.
Therefore the criterion selected is most often not the best but the fastest to retrieve, as
dictated by experience, personality and context.

6 Conclusion: On representation and problem solving

We have designed and implemented a generalized N-puzzle solver that handles with
no complexity cost a number of extensions of the puzzle where a search-based
method would have at least to reinitialize. Our experience and results with the various
stages of design and development are summarized here and are targeted toward the
design and development of other specific solvers and of a more general bottom up
solver. The current version of the solver may be found at:
http://users.softlab.ece.ntua.gr/~brensham/NPuzzle/.

6.1 Representations

Our approach purports to treat classical “symbolic” problems in ways that are
scalable, i.e., using problem solving methods for which the problems remain tractable
as their scale/dimension rises. For this, we study specific solutions in an attempt to

build “general methods for building special-purpose ad hoc systems” and not “general
representations with general inferential procedures” [7]. The overall lesson from our
study of the sliding puzzle is that a scalable algorithmic representation should not rely
on the state-space concept because variants or extensions of the problem would need a
reconstruction or recomputation of the state space. The representation should use the
situated information of the problem (puzzle) in a way that is directly perceivable by
the solver and manipulable (“the world is its own best model”, [9]) and all actions
would be direct actions within this world (the puzzle). Such representations have been
found to be recursive to allow straightforward scaling (puzzle within puzzle) and this
is very much dissimilar to compressed state-based representations such as “patterns”
[6]. The latter are used to channel search away from non-optimal search subspaces
rather than toward quick solutions and they do not introduce any other structure to the
state-space, even if they are used for associative recall as in the original work by
Levinson et al. [10] The pattern databases operate as a meta-level search space
presenting the same inefficiency features at several orders of magnitude below usual
search spaces, so that various extensions attempt to speed up or further channel the
process [11][12]. On the contrary, our representations are intended to be of the order
of complexity of the physical (symbolic) organization of the problem at hand and do
not rise exponentially as the problem gets more complex.

6.2 Planning

A scalable system should support planning at a higher level of representation (such is
in our case study, the planning about the order of placement of blanks). Planning
sequences could be produced by search, even by local evolutionary search if possible
(as could be the case of the corner sequence). However planning of detailed long
sequences should be discouraged and it actually would hardly work, because, in
general, problems (especially puzzles) are not “flat” enough for planning to be able to
solve efficiently. Thus the subgoal formation and evaluation [6] is misleading from a
cognitive standpoint in the sense that subgoals do not have a hierarchical relation to
the overall goal, but they represent potential milestones and not subtasks of lower
complexity. Rather than that, planning should be used to coordinate the various stages
of lower-complexity reasoning [13].

6.3 On scaling and development

We are not studying how the algorithmic solution appeared in the first place (the
Stepping Stone system [14] finds the subgoal sequence that corresponds to more or
less the algorithmic solution, but it does not identify this as an algorithm). We have
shown that for scaling to be possible, i.e. for complexity not to rise in case of
extensions, a number of cognitive skills should be developed in humans and
implemented in human-like solvers. These skills include recursion, minimal planning,
mental rotation (or other re-representation) and problem decomposition and should
replace detailed planning and search that should remain limited. The representation of
the problem (puzzle) is not state space or graph based, but it is rather the geometrical

information of the puzzle itself. Another important result is that to be able to talk
about scalable human-like problem solving, the above and other necessary skills have
to be available as primitives within the problem solver and/or within the programming
system (language or environment) but, unlike Korf’s macro operators, they shouldn’t
always apply. We have found extremely difficult to implement programmatically
these “skills” and “representations” in a way that is as elegant as one would expect
from an AI system for a symbolic problem of the sort and we have been obliged to
invent various programming tricks that did our job without for the least solving the
general (meta-)programming problem. This observation about a cognitive skill based
programming toolkit constitutes a different research direction that we plan to
undertake together with the study of other puzzles some of which are in process [15].

References

1. Nilsson, N.: Principles of artificial intelligence. Morgan Kaufmann, San Francisco (1980)
2. Marr, D.: AI, a personal view. MIT AI Lab AI Memo 355 (1976)
3. Korf, R.E., Taylor, L.A.: Finding optimal solutions to the twenty-four puzzle. In:

Proceedings AAAI, 286—291, AAAI Press, Portland (1996)
4. G. Gigerenzer, P.M. Todd and the ABC Research Group: Simple heuristics that make us

smart. Oxford University Press (1999)
5. Aisbett, J., Gibbon, G.:A cognitive model in which representations are images. Journal of

Cognitive Systems Research, 6, 333-363 (2003)
6. Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence, 14(3), 318-334

(1998)
7. Bylander, T.: Tractability and artificial intelligence. Journal of Theoretical and Experimental

Artificial Intelligence, 3, 171-178 (1991)
8. Loyd, S.: Mathematical puzzles of Sam Loyd. Dover, New York (1959)
9. Brooks, R.A.: Intelligence without reason. Artificial Intelligence, 47, 139-159 (1991)
10. Levinson, R., Beach. B., Snyder, R., Dayan, T., Sohn, K.: Adaptive-predictive game-playing

programs. Journal of Theoretical and Experimental Artificial Intelligence, 4, 315-337 (1992)
11. Holte, R.C., Newton, J., Felner, A., Meshulam, R., Furcy, D.: Multiple pattern databases,

International Conference on Automated Plannning and Scheduling (2004)
12. López, C.L.: Multi-valued pattern databases, European Conference on Artificial Intelligence

(2008)
13. Pitrat, J.: La Métaconnaissance. Hermès (1990)
14. Ruby, D., Kibler, D.: Learning subgoal sequences for planning. In: Proceedings IJCAI,

609—614, AAAI Press, Portland (1989)
15. Tzafestas, E.: Sudoku intelligence. In preparation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

