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Abstract. We are studying the well known problem of the sliding puzzle or N-
puzzle and we are modeling a number of consecutive extensions and their 
solution based on the known algorithmic solution. The usual approach to date 
has been to find optimal solutions (move sequences) to the N-puzzle with the 
aid of sophisticated special-purpose search methods. Our goal is to study it 
from a bottom up perspective and to do cognitive modeling of the scalable 
algorithmic solution that finds suboptimal move sequences but that can do so 
consistently for a large number of extensions with practically no increase in 
polynomial complexity. This approach claims both to model for fundamental 
cognitive skills that are exerted on top of existing intelligent problem-solving 
methods as well as to identify modules of reasoning that should be included in 
any scalably intelligent system. 

Keywords: Sliding puzzle, cognitive modeling, problem solving, problem 
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1   Introduction 

The usual artificial intelligence approach to puzzle solving consists in describing and 
representing the puzzle knowledge in a way that allows one of the general search 
methods to apply, possibly modified appropriately in order to exploit the 
particularities of the puzzle [1]. The application of the general or modified search 
method then yields optimal or near-optimal solutions, i.e. move sequences that drive 
the puzzle from its initial state to the final solved state. The axiom behind this 
approach is that a general method for (intelligent) problem-solving should be able to 
solve all imaginable problems: thus, heuristic search should be able to solve all those 
problems that like puzzle or perfect knowledge games involve reasoning on a 
sequence of states or moves. 

This approach is not however universally accepted. Doubts were cast even in the 
early days of AI ; for example, David Marr [2] stated that “A result in Artificial 
Intelligence thus consists in the isolation of a particular information processing 



problem, and the statement of a method for solving it. Some judgement has to be 
applied when deciding as to what constitutes a method – something based on 
exhaustive search for chess would clearly not qualify. […] The important point is that 
when a method has been established for a particular problem it never has to be done 
again, and in this respect a result in A.I. behaves like a result in mathematics or any 
of the hard natural sciences”. The alternative to exhaustive or heuristic search is to 
model exactly what the human puzzle solver does, i.e. to do human cognitive 
modeling and reproduce the human subject’s problem-solving behavior as much as is 
possible, instead of relying on a general but artificial method to solve the problem. 
Apart from the obvious human modeling target, cognitive modeling of this sort may 
also allow the reuse of its results to solve other analogous problems. 

Our belief is that many of our problem solving skills involve a number of discrete 
or “geometric” manipulations of knowledge that is either basic or acquired through 
instruction and experience with other more or less similar problems. Thus our 
medium term goal is to identify the kinds of “bricks” and “glue” that may or should 
be used to build scalable artificial intelligence systems, i.e. to solve increasingly 
complex problems with minor or no increase in complexity. To this end, we are 
studying a number of well-known puzzles and how a human problem solver scales 
his/her behavior to more complex cases by exploiting the knowledge from previous 
simpler cases. 

In this article we are studying the sliding puzzle (N-puzzle) for which a search-
derived optimal solution exists for small values of N [3] as well as an algorithmic 
suboptimal solution. We are adopting the latter and we are scaling it to a number of 
more complex versions by adding specific skills at each level or “simple heuristics 
that make us smart” [4]. The algorithmic solution has so far been disregarded by AI 
for not producing optimal solutions. However, for human-level intelligence, 
evaluation of intelligence is almost never done on the basis of optimality. In the case 
of puzzles, all human competitions center around the speed of solution, which given 
the physically limited human dexterity translates mostly as reasoning speed to find 
one solution quickly enough. The quest of the optimal solution is a completely 
different mathematical problem, generally uninteresting from an every-day bounded 
resources point of view. 

Our study serves as an illustration of what it should take to devise and solve more 
complex and difficult problems without involving higher complexity skills, i.e. by 
representation manipulation and problem decomposition. Our claim is then that 
human-level intelligence involves precisely those skills that tame and deconstruct 
complexity rather than those that ensure optimality and our aim is to both identify the 
skills and develop ways of incorporating them to real-world problem solving and to 
practical AI programming. 

2   NM sliding puzzle 

The original N-puzzle (which is an instance of a sliding puzzle) is defined as follows: 
A square of KxK tiles is given (N=K2) where each tile is numbered from 1 to N as in 
fig. 1 (right). The last tile is missing and instead there is a blank position where an 



adjacent tile may slide into. A random configuration is provided as initial state and the 
solution of the puzzle consists in finding a sequence of moves that brings the puzzle 
to the solved position. From here on and for the sake of simplicity, we will call N-
puzzle the puzzle with NxN positions. 

2.1   Basic algorithm 

The algorithmic non-optimal solution is the following: 

Solve the top row.  
 {Foreach tile in turn (left to right): if 
 righter than its  target position move up and 
 left until position is found, else move right 
 to wall, then up and left} 
Solve the remainder of the left column. 
 {Foreach tile in turn (top to bottom): if 
 lower than its target position move left and 
 up until position is found, else move down to 
 wall, then left and up} 
The order of the puzzle is now reduced by 1.  Recurse 
as necessary (N-1 puzzle). 

Figure 1 shows an example run. The complexity of the algorithm is O(N3), because 
each tile needs at most 2N steps to be correctly placed. 

 

Fig. 1. Initial state, an intermediate state, final state. The tiles that are currently correctly placed 
are heavily marked in blue, while the current position of the blank is marked in red. One can 
clearly see the progression from top row, left column toward bottom and right. 

2.2   NM Puzzle 

The puzzle formulation as well as all solutions (search-based and algorithmic alike) 
actually do not depend on the puzzle being an exact square and can work equally well 
conceptually on a NxM puzzle with different lengths for the edges. This is the 
definition we have adopted in what follows (the square puzzle is a special case of the 



NM puzzle). Figure 2 shows an example run. The complexity of the algorithm in this 
case is O(X3), where X=max(N,M), because each tile needs at most M+N steps to be 
correctly placed. 

 

 

Fig. 2. Initial state, an intermediate state, final state. 

2.3   Corner rule 

The only intricate case in the algorithmic solution of the N puzzle or the NM puzzle is 
the handling of the last two tiles in a row (or column) because once the penultimate is 
correctly placed, the last one cannot be placed without disturbing the previous one. To 
solve this anomaly, a special pre-planned sequence is applied. First, we bring the 
penultimate and ultimate tiles to the positions shown below and we apply the 
sequence shown for the end of rows (a similar rule is used for the end of columns): 



   

   

   

   

   

 

Fig. 3. Sequence of moves that solves the corner anomaly. 

2.4   Lessons 

While we have not touched on the issue of how the initial algorithm was found, we 
observe that it scales directly to the generic NxM puzzle case. We also observe that 
for a human problem solver, the directive to solve the top row and left column first 
and then the rest of the puzzle recursively is not sufficient. One has to discover a 
sequence of moves that solves the corner anomaly, whereas a search-based method 
does not distinguish betwwen these moves and the rest of the moves. This is an 
indication, that the original geometric knowledge and inspiration to solve the puzzle 



recursively has to be combined with some local search and planning method that is of 
an order tractable for a human mind. Inspection of the execution of the algorithm has 
also shown that the machine solver exploits unexpected opportunities (configurations 
that were expected later during solving) more easily than a human user. This is 
because the human generally focuses on the current step of the algorithm s/he is 
executing and may miss these opportunities. On the contrary an experienced human 
solver can find on the fly small efficient if not optimal sequences for certain limited 
positions s/he encounters and behaves thus “creatively” in front of some novel local 
opportunities. 

3   Any corner sliding puzzle 

The NM puzzle can be solved without a complexity penalty for the case of a blank 
that is not the NM-1 tile but one of the other three corners (tiles 1, M or NM-M+1). 
The only difference resides in the orientation of the puzzle; whereas for a human 
problem solver the handling of the puzzle will be straightforward once he starts 
thinking about it as a rotated one, a search-based method would in general involve a 
more intricate reinitialization of the state space reflecting the mental rotation. 

3.1   Rotation rule 

The mental rotation rule can be easily implemented in the artificial puzzle solver as an 
embedded renumbering of the tiles, the solving algorithm remaining intact. Figure 4 
shows an example run. 

 



 

Fig. 4. Initial state, an intermediate state, final state. The target blank position is heavily 
marked in green. One can clearly see the (rotated) progression from bottom row, left column 
toward top and right. 

3.2   Lessons 

To implement the mental rotation rule one needs both recursion and re-representation. 
Change of representation (here: encoding) is important and is one of the tools that 
should come in the problem solver’s bag. Note also that any one of the tools has to 
have an easy way to be integrated with others. Part of the criticism against traditional 
symbolic AI approaches is targeted toward the difficulty of implementing such 
“declarative” pattern-oriented rules within AI problem solvers. While the criticism 
may be theoretically correct, we believe that the difficulty is not conceptual, but rather 
it stems from the inherent limitation of usual symbolic, logic or, worst yet, procedural 
programming languages to handle directly such relational pattern-oriented 
information. The issue of the direct relation between image representations and 
cognition has been also put forth by Aisbett and Gibbon [5]. 

4   Any position sliding puzzle 

The obvious extension of the NM puzzle is to have an arbitrary blank position. In this 
case, the human user mentally decomposes the puzzle into the part that can be directly 
solved to leave a smaller possibly rotated puzzle that can be solved as before. Again, a 
human problem solver would handle the puzzle in a straightforward recursive way, 
while a search-based method might involve another reinitialization of the state space 
reflecting the new blank position. 



4.1   Decomposition rule 

The solver first easily determines the minimum number of rows and columns to be 
solved before reducing the remaining of the puzzle to a regular puzzle with a corner 
blank. The rest of the algorithm is as before and the complexity of the solver does not 
change. Figure 5 shows an example run. 

 

 

Fig. 5. Initial state, two intermediate states, final state. One can clearly see the two steps 
involved: first the filling of a few rows and columns from the top and the left, respectively, then 
the (rotated) progression from bottom row, right column toward top and left. 

4.2   Lessons 

To implement the decomposition a solver uses a criterion for decomposition that leads 
recursively to a puzzle it can solve. In the general case, we would expect human-like 
puzzle solvers to try various criteria to find out which one works -or works best- in 
order to develop next level algorithms. These criteria are unlike the ones used in 



pattern database approaches [6] that seek to discover the optimum by introducing 
search “cuts” rather than our tractable routes to non-optimal quick solutions. 
Decomposition thus should be a cognitive “heuristic” appropriately implemented 
within a problem solver that serves not optimality but tractability [7]. 

5   Multi-objective sliding puzzle 

The final extension of the NM puzzle is to have many arbitrarily placed blanks. In this 
case, the human user mentally plans the order of placement of blanks and decomposes 
the puzzle to parts that can be directly filled (rows and columns possibly with blanks) 
and at least one part that is a puzzle with an arbitrary or corner blank. Once more, a 
human problem solver decomposes very easily, while a search-based method would 
involve many reinitializations of the state space reflecting the various blanks 
configuration. 

5.1   Rule for two blanks 

The solver first easily determines the blank with the minimum euclidean distance to 
any of the corners and fills this part of the puzzle (including the corresponding row or 
column of the selected blank) reducing the remaining of the puzzle to a regular puzzle 
with an arbitrary blank. The rest of the algorithm is as before and the complexity of 
the solver does not change. Figure 6 shows an example run. 

 



 

 

Fig. 6. Initial state, three intermediate states, final state. One can clearly see the three steps 
involved: first the filling of the left row that has a blank, then the filling of a few rows and 
columns from the bottom and the left, respectively, finally the (rotated) progression from top 
row, right column toward bottom and left. This solution only involved 2787 moves. Note that 
because the puzzle’s initial configuration is not derived through tile shuffling but through 
random tile initialization, it is possible to come up with a variant of the (unsolvable) Loyd’s 
puzzle [8], which is the case in this run. 

5.2   Generalization 

It is possible to extend this problem solver to accommodate larger blank sets. We 
have implemented a generalized version of the solver that solves for an arbitrary (but 
small, on the order of N or M) number of blanks, leaving for the future the case where 
the blanks are so many that it is easier to manipulate the numbered tiles within the 
blank space and direct them to their positions than to plan the solution as before. In 
this case as in the two blanks case, the human user mentally plans the order of 



placement of blanks and decomposes the puzzle to parts that can be directly filled 
(rows and columns possibly with blanks) and parts that are puzzles with an arbitrary 
or corner blank. Once more, a human problem solver decomposes very easily, while a 
search-based method would involve several reinitializations of the state space 
reflecting the various blanks configurations, and this recursively in every successive 
number of blanks reduction. The solver decomposes recursively as in the case of two 
blanks and the complexity of the solver does not change. Figure 7 shows an example 
run for four blanks. 

 

 



 

Fig. 7. Initial state, an intermediate state, final state. This solution only involved 8778 moves. 

5.3   Lessons 

To implement the decomposition for an arbitrary (small) number of blanks, a solver 
uses a recursive criterion for decomposition that leads recursively to smaller puzzles 
until it finds puzzles with a unique blank. In the general case, we expect human-like 
puzzle solvers to adopt the same criterion as in the previous case (any position blank). 
However, given the multitude of decomposition and planning possibilities available, a 
real human subject does not always choose the optimal criterion, but choices are 
differentiated across subjects and sometimes for the same subject across runs. 
Therefore the criterion selected is most often not the best but the fastest to retrieve, as 
dictated by experience, personality and context. 

6   Conclusion: On representation and problem solving 

We have designed and implemented a generalized N-puzzle solver that handles with 
no complexity cost a number of extensions of the puzzle where a search-based 
method would have at least to reinitialize. Our experience and results with the various 
stages of design and development are summarized here and are targeted toward the 
design and development of other specific solvers and of a more general bottom up 
solver. The current version of the solver may be found at: 
http://users.softlab.ece.ntua.gr/~brensham/NPuzzle/. 

6.1   Representations 

Our approach purports to treat classical “symbolic” problems in ways that are 
scalable, i.e., using problem solving methods for which the problems remain tractable 
as their scale/dimension rises. For this, we study specific solutions in an attempt to 



build “general methods for building special-purpose ad hoc systems” and not “general 
representations with general inferential procedures” [7]. The overall lesson from our 
study of the sliding puzzle is that a scalable algorithmic representation should not rely 
on the state-space concept because variants or extensions of the problem would need a 
reconstruction or recomputation of the state space. The representation should use the 
situated information of the problem (puzzle) in a way that is directly perceivable by 
the solver and manipulable (“the world is its own best model”, [9]) and all actions 
would be direct actions within this world (the puzzle). Such representations have been 
found to be recursive to allow straightforward scaling (puzzle within puzzle) and this 
is very much dissimilar to compressed state-based representations such as “patterns” 
[6]. The latter are used to channel search away from non-optimal search subspaces 
rather than toward quick solutions and they do not introduce any other structure to the 
state-space, even if they are used for associative recall as in the original work by 
Levinson et al. [10] The pattern databases operate as a meta-level search space 
presenting the same inefficiency features at several orders of magnitude below usual 
search spaces, so that various extensions attempt to speed up or further channel the 
process [11][12]. On the contrary, our representations are intended to be of the order 
of complexity of the physical (symbolic) organization of the problem at hand and do 
not rise exponentially as the problem gets more complex. 

6.2   Planning 

A scalable system should support planning at a higher level of representation (such is 
in our case study, the planning about the order of placement of blanks). Planning 
sequences could be produced by search, even by local evolutionary search if possible 
(as could be the case of the corner sequence). However planning of detailed long 
sequences should be discouraged and it actually would hardly work, because, in 
general, problems (especially puzzles) are not “flat” enough for planning to be able to 
solve efficiently. Thus the subgoal formation and evaluation [6] is misleading from a 
cognitive standpoint in the sense that subgoals do not have a hierarchical relation to 
the overall goal, but they represent potential milestones and not subtasks of lower 
complexity. Rather than that, planning should be used to coordinate the various stages 
of lower-complexity reasoning [13]. 

6.3   On scaling and development 

We are not studying how the algorithmic solution appeared in the first place (the 
Stepping Stone system [14] finds the subgoal sequence that corresponds to more or 
less the algorithmic solution, but it does not identify this as an algorithm). We have 
shown that for scaling to be possible, i.e. for complexity not to rise in case of 
extensions, a number of cognitive skills should be developed in humans and 
implemented in human-like solvers. These skills include recursion, minimal planning, 
mental rotation (or other re-representation) and problem decomposition and should 
replace detailed planning and search that should remain limited. The representation of 
the problem (puzzle) is not state space or graph based, but it is rather the geometrical 



information of the puzzle itself. Another important result is that to be able to talk 
about scalable human-like problem solving, the above and other necessary skills have 
to be available as primitives within the problem solver and/or within the programming 
system (language or environment) but, unlike Korf’s macro operators, they shouldn’t 
always apply. We have found extremely difficult to implement programmatically 
these “skills” and “representations” in a way that is as elegant as one would expect 
from an AI system for a symbolic problem of the sort and we have been obliged to 
invent various programming tricks that did our job without for the least solving the 
general (meta-)programming problem. This observation about a cognitive skill based 
programming toolkit constitutes a different research direction that we plan to 
undertake together with the study of other puzzles some of which are in process [15]. 
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