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Abstract. The modeling of cooperative processes has up to now relied almost exclusively on the
traditional cognitivist paradigm, employing explicit representations of goals, beliefs and actions, as seen
from an observer’s “objective” viewpoint. We present here a quantitative tit-for-tat agent model that is
parameterisable, adaptive and scalable. Unlike traditional game theoretic contexts, the kind of social
behavioral phenomena we intend to explore shows relativity or subjectivity (the same social situation
may be perceived differently by different agents) and dynamicity (if agents are adaptive, an external
observer will think the rules of the game change dynamically). This is achieved through the definition
of “social” objects or properties, which can be abstract or have a material form, and that are
perceivable, accessible and manipulable by the agents. Agents have internal, idiosyncratic motivations
that they try to satisfy according to the social feedback. The quantification of the basic tit-for-tat model
concerns a threshold parameter (for detection of cooperation) and the perception/action parameters and
structures. Diversity in parameters and structures shows as relativity of the game and adaptivity of
structures shows as dynamicity. To deploy the potential of the approach, we present three examples
where the differential expression of those matching motivations of individual agents gives rise to a
variety of social phenomena with intricate dynamics. The implications for the study of emergence in
artificial life are finally briefly sketched.

Résumé. Jusqu’à maintenant, la modélisation des processus coopératifs a reposé presque exclusivement
sur le paradigme cognitiviste traditionnel, c’est-à-dire le paradigme qui utilise des représentations
explicites de buts, de croyances et d’actions, du point de vue d’un observateur “objectif”. Nous
présentons dans cet article un modèle tit-for-tat quantitatif d’agent, paramétrable, adaptatif et
dimensionnable. Contrairement aux contextes traditionnels de la théorie des jeux, les phénomènes
sociaux que nous avons l’intention d’explorer avec ce modèle montrent des propriétés de relativité ou
de subjectivité (la même situation sociale peut être perçue différemment par les différents agents) et de
dynamicité (si les agents sont adaptatifs, un observateur externe verra un jeu dont les règles varient
dynamiquement). Pour ce faire, nous définissons des “objets sociaux” matériels ou abstraits, qui soient
perceptibles, accessibles et manipulables par les agents. Les agents ont des motivations internes
idiosyncratiques qu’ils cherchent à satisfaire en accord avec le feedback social. La quantification du
modèle tit-for-tat de base s’applique sur un paramètre de seuil, servant pour la détection de coopération,
et sur les paramètres et structures de perception/action. La diversité des paramètres et des structures se
manifeste comme la relativité du jeu et l’adaptativité des structures se manifeste comme la dynamicité.
Le potentiel de cette approche est démontré sur trois exemples, dans lesquels l’expression differenciée
des motivations des agents donne naissance à une multitude des phénomènes sociaux ayant des
dynamiques intéressantes. Finalement, nous esquissons brièvement l’intérêt de ce modèle pour l’étude
de l’émergence dans le domaine de la vie artificielle.

                                                          
* This work has been the object of a paper (Tzafestas 1995a) that was revised to yield this report.
Additional applications of the quantitative tit-for-tat model appear in the fifth and seventh chapter of my
Ph.D. thesis (Tzafestas 1995b).



2

“In a sense, cooperation could be older than life itself.”
(Nowak et al. 1995, p. 55)

1 Introduction

We have been seeking a bottom-up social behavior model in an attempt to integrate
social with non-social behavior when designing autonomous agents and especially
mobile behavior-based robots or animats. This model of social behavior should fulfill
the following requirements : i) reactivity, in order to be integrated with other reactive,
but non-social behaviors (however, we are going to rediscuss and relax this constraint
in section 6), ii) adaptivity, in the sense of possibility to modify the internal
parameters or structures of the behavior, and iii) scalability, which is abstractly the
possibility to ascend representational levels so as to explore the potential for higher-
level “cognitive” functions.

A parallel motivation for these explorations has been the curiosity to investigate the
implications of a “closed-world hypothesis” : the kind of social behavior we wish to
investigate is by no means limited to game-theoretic settings, where agents are by
definition competitive, but involves more general participant relations where agents
measure degrees of individual satisfaction that depend on the social context1. In such
participant contexts, there is no external “policeman” or “manipulator” agent that has
set the rules of the game once and for all according to his own interests, but rather the
agent themselves “create” this game dynamically. The key idea is that the basic
behavior of all agents participating in a social group is the same, but significant
variations in internal parameters, degrees of satisfaction etc. exist -and these variations
may give rise to complex phenomena, as will be shown in sections 3 to 5. The kind of
social behavioral phenomena we intend to explore shows therefore relativity or
subjectivity (the same social situation may be perceived differently by different agents)
and dynamicity (if agents are adaptive, an external observer will think the rules of the
game change dynamically). The role of such a diversity for the evolution of
cooperation is by now widely accepted. Diversity, which was initially attributed to
stochasticities or errors (Boyd 1989, Nowak & Sigmund 1989), is now being
investigated as an intrinsic element and the motor of the evolutionary process (May
1987, Nowak & Sigmund 1992, Glance & Huberman 1994).

The longer-term ambition is the study of the relation between social autonomy and
emergence of higher-order organizations. The main hypothesis of this study is that
higher-order organizations emerge as a result of cooperation between lower-level
entities, and this process is irreversible (see also (Tzafestas 1995c)). The lower-level
social system has to be autonomous for higher-order organizations to be truly
emergent, that is for emergent organizations to be relatively unpredictable. Such a
social autonomy will show as robustness to perturbations and can only be achieved
whenever there is enough diversity.

                                                          
1 In this sense, participation corresponds to what Axelrod and Dion (1988) called a behavior-dependent
context of play. It is also consistent with Becker’s (1976) operational analysis which suggested that
altruism (cooperation) has selective advantage in contexts involving generalized physical or social
interaction. De Sousa (1990) argued that such sociobiological models are valid candidates for the study
of social phenomena.
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Intuitively, a multi-agent system is supposed to have an operational advantage in
comparison with a mono-agent system, that is, sociality means that agents “cooperate”
toward the achievement of a common goal. The modeling of cooperative and social
processes by the distributed artificial intelligence community has relied on this top-
down view and has followed the traditional cognitivist paradigm, that employs
explicit representations of goals, beliefs and actions, from un “objective” observer’s
viewpoint : a good review of applications to problem solving may be found in (Durfee
et al. 1989). This approach has focused on the subproblems of goal identification and
communication, conflict resolution, negotiation etc. (see several papers in (Bond &
Gasser 1988), (Huhns 1987), (Gasser & Huhns 1989), (Demazeau & Müller 1990) and
(Demazeau & Müller 1991)). The same top-down cognitivist paradigm also served as
a foundation of research on communication and social structure (Werner 1989)
(Werner 1990) (Findler & Malyankar 1993).

However, as Castelfranchi has pointed out (Castelfranchi 1990) (Conte et al. 1991),
the fundamental question should not be “how to get multiple agents achieve a social
goal”, but instead “why does an autonomous agent enter into social interactions” (the
sociality or dependency problem) and “how does an agent get his problem to become
social, i.e. get it adopted by other agents” (the goal adoption problem). Castelfranchi
further proceeded to declare that cooperation is just a special case of goal adoption,
which in most approaches takes place as if by magic, and that for adoption to occur,
communication or request are not compulsory. He advocated therefore a selfish view
of generic social exchange, based on reciprocal self-interest of autonomous agents,
rather than on instruction and persuasion. Castelfranchi’s view is essentially bottom-
up and selectivist : what appears as agent sociality is nothing else but the sharing of
otherwise individualistic, selfish goals of the agents.2

We call sociality the goal sharing (or need sharing) of agents, that is, sociality
intervenes to the agents’ “motivational” system and modifies those motivations, or
else it induces social perturbation.

Of course, goal sharing does not imply that all agents have the same goal ; much more
complex social relations and structures emerge if the agents’ goals form a multi-level
dependency network.

In this sense, cooperation is just positive sociality, i.e. the kind of sociality that
induces an improvement of individual agents’ performance, always passing through
their motivational system. The difference with the top-down view is that now
cooperation becomes relative : we call cooperation the type of sociality that leads to
an individual performance improvement of an agent according to its own criteria.
That is, agents decide themselves about what is cooperative and what is not, and a
situation that is perceived as cooperative by an agent may not be considered so by
another one. A population of agents having this relative and differentiated form of
sociality, hence a society of agents, will give birth to emergent structures, among
which are social standards. Relative sociality will result in an agent deciding whether
he will follow the standards or not, whether he will “cooperate” or not, so that those
emergent social structures will be dynamic. We may say that this society is

                                                          
2 This didn’t prevent him from remaining within the cognitivist paradigm during his analysis of social
commitments (Castelfranchi 1995), even if his reasoning does not necessarily rely on a mental-states-
based description.
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autonomous, in the sense that it evolves mainly due to internal forces, rather than in
response to some sort of external “instruction”.

Intrinsic reciprocity in social relations, that is motivated reciprocity stimulated by
“kin”  recognition (i.e., recognition of agents that share goals), parallels the two
hypotheses formed by evolutionary biologists in order to explain the cooperative
living systems (see Trivers (1971) for reciprocity and (Hamilton 1964) for kinship)
and on which a whole branch of research is founded, the study of the evolution of
cooperation (Axelrod & Hamilton 1981). Note that this type of sociality resembles the
vertebrate “explicit” sociality, rather than the insect eusociality, where societies are
formed by differentiation (Wilson 1975). As already said, this choice has been made
with the longer-term aim to investigate whether higher-level cognitive abilities may
emerge out of reactive, pro-social ones (point made by McFarland (1994)). With these
in mind, we quantified the original tit-for-tat model (Axelrod & Hamilton 1981) in a
way to be able to apply it in the context of participant social relations : instead of a
static game, such as the prisoner’s dilemma, we wish to investigate situations where
agents create themselves this “game” dynamically and agents’ history plays a more
direct role than in a game. On top of that, our explorations focus on agents’
operationality, that is on their satisfaction during their “life” rather than on their
reproductive value (fitness).

2 The quantitative tit-for-tat model
(or, why my cooperation is not the same as yours)

Social behaviors are just like other agent behaviors in that they depend on some
internal motivational drive as well as on external stimuli. We may assume that the
motivation of the agent to engage in the social behavior/task is genetic and is a
decreasing function of the degree of satisfaction of this task ; however, in the
following examples, we will only consider agents with a single, social task, so we will
not need to compare this motivation to others, nor perform any arbitration between
motivations. The external stimuli, upon which such a behavior depends, express
measures of the corresponding social activity which may be interpreted as friendly
(cooperative) or hostile (non-cooperative). We expect an agent to be friendly in
friendly environments and hostile in hostile ones. Furthermore, by coupling the
stimuli perception to the internal degree of satisfaction, we may say that whenever that
degree of satisfaction -itself being a function of the value of the perceived stimulus-
exceeds a given threshold, the social environment is considered cooperative,
otherwise it is considered hostile. The agent will then modify its degree of
participation to its social environment according to this perception. The perceived
stimulus is some sort of “social” object (hint, in terms of Hogg & Huberman (1992)),
abstract or material, directly visible and manipulable by the agents. Finally, the actions
of the agents influence directly the same social objects that are perceived, so that
social interaction is a continuous, self-catalyzing process, relying on the presence of
such matching agent motivations. The above are summarized in figure 1.

This model is actually a quantitative tit-for-tat model, where the agent actions as well
as the perception and satisfaction functions are continuous, rather than binary. This
allows us to include adaptive components into the agents’ behavior, that will modify
these functions in order to achieve higher satisfactions -an illustrative example is
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presented in the next section. The a() and b() functions are in essence metabolic
functions and we can complexify them at will, as is the case in sections 4 and 5. The
perception function might include substantial filtering, equivalent to distortion of
objective reality (if we assume that such a thing as objective reality exists!). Filtering
may also be seen as an interpretation of reality in terms of what the agent understands.
It will be later argued that those a(), b(), satisfaction and filtering (from now on
denoted f()) functions are actually implicit predictive functions of the behavior of
other agents -however, there is no explicit logically or symbolically represented belief,
expectation, intention etc. The output functions a() and b() may also include side-
effects, such as mobility, aggression and flight in the example of section 5. Unlike
Hamilton’s model, the perception function of the agent, which gives a measure of
cooperation, reasons on immediate satisfaction, rather than on ultimate fitness.3 The
immediate satisfaction is, as already said, a linear function of the perceived stimulus
value, which in the subsequent sections is computed by averaging the outputs of
agents. This measure of participation/cooperation can be then considered as an
inclusive reward, by analogy with Hamilton’s inclusive fitness.

Social behavior

If perception(social_ stimulus) T≥ ,
then “cooperative or friendly environment, hence cooperate”

output a(perception)
else “non-cooperative or hostile environment, hence defect”

output b(perception)
where :

social_stimulus is the social object involved,
T is the cooperation threshold
a() and b() are the action functions of the agent in friendly or hostile

environment, respectively.

Figure 1 The quantitative tit-for-tat model 4

Agents are generally heterogeneous : thresholds, as well as functions f(), a() and b(),
may vary widely from agent to agent, still the basic model remains intact. Agents are
all born with the same needs qualitatively, but not quantitatively (we wouldn’t call it a
society if the agents were not supposed to share something). Moreover, different
agents may be defined to have different individual needs or participate indirectly in
the process that triggers them (by outputting a different kind of object than the one
perceived) etc. -so that a variety of complex situations may be modeled. In sum, what
one agent perceives as cooperative may not be so for a second one : cooperation
criteria are relative and agent actions have a differential impact upon other agents.

The above quantified tit-for-tat model was adopted for a number of reasons. First, the
basic tit-for-tat model has been proven to be an optimal and evolutionary stable
strategy, since it is nice, retaliatory and forgiving (Dawkins 1976) (Axelrod 1984).
Hence, as a starting point, the tit-for-tat model seems a plausible model of generic
social interaction. However, and due to its binary nature, it looks insufficient for
modeling complex social phenomena, such as the ones presented in subsequent
sections. Defining continuous satisfaction, a(), b() and f() functions, multiplies its
                                                          
3 Cognition might just be the process that learns to associate the two measures.
4 In a game-theoretic context, such as the prisoner’s dilemma, a tit-for-tat agent is an agent who has the
simple strategy of cooperating in the beginning of the game and returning its opponent’s move
thereafter (Axelrod & Hamilton 1981).
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modeling potential, as has been already exposed, and allows great variations that may
give rise to intricate dynamics. However, this is not a game-theoretic setting like that
exemplified by the prisoner’s dilemma (as in Axelrod & Hamilton (1981)), since there
is no a priori temptation for agents to defect. Actually, the agents don’t have any
particular “bias” or “will” toward either cooperation or competition. Cooperation,
deceit and a plethora of other social phenomena are all in the eye of the observer.
What the agents are doing is trying to maximize their individual satisfaction and so act
according to perceived social feedback -which isn’t any different from other types of
feedback they receive. Agents in pursuit of multiple satisfactions, or else governed by
multiple hedonistic motivations, will unavoidably seek compromises between those
motivations. Returning to the prisoner’s dilemma and games theory -that have
benefited from a recent resurrection within the sciences of complexity and artificial
life (Nowak & May 1992), (Sigmund 1992), (Angeline 1994), (Batali & Kitcher
1994)-, the above presented quantitative tit-for-tat model may certainly be instantiated
in such contexts by simply adding a special play-maker agent who will set the rules of
the interaction and will “manipulate” the rest of the agents by modifying the rewards
they receive. Spontaneous emergence of social phenomena will then be pruned and
canalized to particular sub-spaces according to the play-maker’s own motivations and
intentions.5

All the simulations whose results are reported in the following paragraphs have been
performed using synchronous simulation mode (i.e. all agents perceive the world and
act at the same discrete time steps) ; this was meant to reduce complexity of the
emergent phenomena and thus enhance observability, while subsequent phases of the
study will certainly involve continuous time-scales (or, equivalently, delayed action
models) which have been shown to have drastic impact on the dynamic behavior and
especially the stability of distributed systems (Huberman & Glance (1993), Bersini &
Detours (1994)). The results presented next in increasing order of example complexity
do not purport to be significant or novel by themselves, but to demonstrate through
seemingly simple examples the potential of the model to account for complex
“emergent” phenomena. This is also the reason for analyzing them only qualitatively.
Finally, and unlike work on the original tit-for-tat model (Axelrod & Hamilton 1981),
we don’t study evolutionary phenomena, but emergent social ones during the agents’
life-time.

3 Cooperation, environment and theology : Diversity in parameters

The first example instantiated after the quantitative tit-for-tat model involves a
community of agents each one seeking to maximize the received “affection” by other
agents. As already said, the affection measure each agent perceives is the average of
all the affection rates output by the agents. We assume that all values are normalized
between 0 and 1 and that f() is the identity function, f(x)=x, so that there is no filtering
of reality. We also assume that there are variations in the agents threshold, a() and b()
functions -because, if all agents were born the same, they would be happy from the
beginning and there would be no problem to solve : all tit-for-tat agents would start by
cooperating and the system would be stable. Finally, we are only considering the case

                                                          
5 Sometimes, nature itself may be regarded as the play-maker, who sets resources and other constraints ;
real biological examples generally fall into this category (Wilson 1975).
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where a() and b() are linear functions : a(x)=a*x and b(x)=b*x, though we could
easily generalize. For agents to be considered as rational, a(T) b(T)≥  should hold,
whence a b≥ . It follows that the three parameters of our affection model are T, a and
b.

Experiment 1 : Variations and perturbations. We simulated several variation
schemes for interaction periods from 40 to 100 cycles. Fixing T to 0.5, defining a as
random between 0 and 1 and b=a/2 or b=a/3 ; fixing T to 0.5, defining b as random
between 0 and 1 and a=max(2*b,1) ; having a and T be randoms, b=a/2 or b=a/3, etc.
In all cases, the agents performed only a few (from 0 to 5) cooperative moves in
successive cycles in the beginning of the interaction and the system then stabilized to
all agents acting non-cooperatively. We then introduced perturbation to the system,
where with a given probability p (0<p<1) the global affection value was reduced by a
factor of f (0<f<1). Again, simulating for a number of pairs of values p-f in a number
of schemes of variations yielded the same qualitative results, as might also be
intuitively expected, inducing however additional variation in the satisfaction state of
the agents. From this it might be deduced that the present rigid interaction scheme by
itself causes already very bad behavior for perturbation to make any difference. Note
that the variations may be seen as the genetic cause of misimplementation and
misperception, to use Axelrod & Dion’s (1988) terminology, while the perturbations
correspond to changes in the “rules of the game”.

Experiment 2 : Adaptive agents. Given the low satisfaction rates of agents in the
previous experiment, we added adaptive mechanisms that modify those internal T, a
and b parameters.6 We differentiate between two such mechanisms, the passive
mechanism which makes the agent more indifferent to the absence of affection by
reducing T, and the active mechanism which makes the agent give out more by
increasing a and b up to the maximum value of 1. If we wish to draw a real-life
analogy that might help in better evaluating our results, we might associate the active
and passive mechanism to christian and buddhist behavior respectively7. In both cases,
we defined a learning horizon w (during which an agent measures its satisfaction) and
a learning rate which serves to update T or a respectively according to the adaptation
law : T(or a)=T(or a)-rate*diff, where diff=T-average_input_level_during_w. Update
(adaptation) only takes place when diff is positive. Simulating the community for
various parameter sets (T, a, w, rate) in all three modes, i.e. without adaptation, in
active mode and in passive mode, no significant changes were observed. This was
apparently counter-intuitive ; closer examination and inspection of the simulations
revealed that what was wrong in the initial model was the method of experience
accumulation : actually the agents should be satisfied (or happy inside) by
introspection, i.e. when they act cooperatively and not when they perceive a
cooperative environment (diff=T-average_output_level_during_w). For this to work,
however, we needed an additional parameter : generosity, i.e. a probability g
(0 g 1≤ ≤ ) with which an agent does not return a bad move. Simulation with different
degrees of generosity, learning rates etc. showed that the new adaptive agents’ average

                                                          
6 Another simple example of adaptivity in tit-for-tat agents is the reinforcement model “Pavlov” of
Nowak and Sigmund (1993).
7 We do not mean however to give here any explanation about theological positions and beliefs, we are
just using this analogy as a basis for better interpretation and more profound understanding of the
results obtained.
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satisfaction were an order of magnitude larger than that of the non-adaptive, non-
generous agents (around 30% as opposed to 2-3% in the non-adaptive case). As in the
previous experiment, the uniform case (with fixed g=0.2 and r=0.3) was half as
performant as the case of extreme variation (g and r random) where average
satisfaction could rise up to 50%.

Due to the statistical nature of experiments and the large variations in random settings
of individual runs, we compared cases by randomly breeding a population and then
initializing it in different contexts : all active, all passive, mixes, etc. Qualitatively, the
results have been the same over a large set of populations ; to see the comparative
quantitative differences, we present in the following tables some typical cases
(however, and due to the random variations introduced, the quantitative results may
seem inconsistent among different tables). Table 1 gives the comparative results for a
population of agents when defined as non-adaptive, as active or as passive. As can be
seen from those results, the active agent does not differ from the non-adaptive one
(only a little bit in the beginning, but not in the long term), while the passive mode
shows slow, but steady improvement. This may be attributed to the fact that the
“active” agent actually does not adapt its cooperation detection mechanism, which is
unlike the “passive” case (where the threshold changes).

t=200 t=400 t=600
10 non-adaptive 34.71 35.78 35.42

10 active 35.72 35.16 35.44
10 passive 36.51 39.87 46.59

Table 1 Comparative results for 10 agents (columns give the average satisfaction
percentages at different moments during each run).

Experiment 3 : Adaptation and environment. We then proceeded to examine whether
the two adaptation mechanisms would perform differently in environments with
different degrees of perturbation (where perturbation corresponds to reducing the
average output of the agents by a given factor with a given probability). We simulated
homogeneous and heterogeneous populations, consisting respectively of only passive
or active agents or of a mix of the two. In all cases the average satisfaction of the
agents has been found insensitive to the degree of perturbation -which at first glance is
not expected, since perturbation in this context is nothing else than an invitation to
learn. This is an indication that the variations between agents are much more critical
than the environmental perturbation (in this sense, learning is true social learning).

No perturbation Low perturbation (0.1, 0.1) High perturbation (0.8, 0.8)
t=200 t=400 t=600 t=200 t=400 t=600 t=200 t=400 t=600

10 active 57.61 56.18 56.43 57.41 56.51 55.89 56.07 55.61 55.96
10 passive 56.76 61.10 64.64 55.62 59.98 63.86 54.78 60.55 63.91

5 ac., 5 pas. 56.91 61.87 65.31 55.22 60.57 63.91 56.52 56.11 56.57

Table 2 Comparative results for 10 agents (columns give the average
satisfaction percentages at different moments during each run)

Experiment 4 : Meta-adaptive or multi-modal agents. We then went on to investigate
agents that possess both adaptation modes and have to learn to apply the one that
proves to be most effective, i.e. the one that leads to higher satisfaction. To this end,
we introduced continuously updated success measures in the two adaptation modes
with probabilities relative to those success measures. All agents at birth have
p(active)=p(passive)=0.5. Results from comparative runs for 40 such multi-modal
agents are given in table 3. It may be observed that although the passive adaptation



9

mode has been proven more effective than its active counterpart, the multi-modal
agents are not capable of recognizing this (the relative probabilities of the two modes
are both and always around 50%). Why is this so ? By closely inspecting the
simulations it was found that actually the active adaptation mode has been
“exploiting” the passive one’s superiority, by being successful not thanks to its own
competence, but because the passive mode has been improving the default behavior of
the agent (by reducing the threshold).

No perturbation Low perturbation (0.1, 0.1) High perturbation (0.8, 0.8)
t=200 t=400 t=600 t=200 t=400 t=600 t=200 t=400 t=600

satisfaction 49.73 50.50 51.92 49.54 50.27 51.88 49.96 51.14 53.14
p(passive) 50.50 49.62 50.23 49.11 50.57 51.82 50.33 50.51 49.91

Table 3 Comparative results for 40 multi-modal agents at different moments and
contexts.

Experiment 5 : Injecting vicious agents. Next, we introduced apparently vicious
agents (but only apparently so!), that is, agents that defect when you don’t expect it,
because their perception system is noisy ; as with global perturbation, we defined a
perturbation probability (constant across different agents and equal to 0.5) and a
perturbation factor (again constant and equal to 0.5). Furthermore, we banned them
from any adaptation possibility. We run several mono-type or multi-type populations
of agents, always mixing with a proportion of vicious ones. In all cases, the vicious
agents showed inferior satisfactions than their adaptive counterparts, while the
adaptive agents showed substantially superior satisfaction when vicious agents were
present -because then they learned to become better. Actually, presence of vicious
agents is nothing else but another kind of more elaborate perturbation for “normal”
adaptive agents. Finally, the average satisfaction of a population without vicious
agents was found to be between that of a population with a high percentage of vicious
agents (around 50%) and one with a low percentage (around 10%) -this is a
consequence of the contribution of each sub-population to the overall satisfaction.

Experiment 6 : Doing the unthinkable. In this last experiment, we modified the
active adaptation mechanism so as to scale generosity (“learn to love your enemy”).
The same adaptation formula previously applied to a was now applied to a and g. Not
unsurprisingly, various simulation runs showed that the active agents quickly
developed generosity close to the unity and arrived at satisfaction rates as high as
95%. Of course, the same is true for a passive mechanism that scales generosity
(although generosity is an active parameter, not very compatible with the passive
mechanism). The remarkable difference between the two, as is shown in table 4, is
that now the active mode is much more “efficient” than the buddhist one, both in
terms of absolute satisfaction and learning speed.

No perturbation Low perturbation (0.1, 0.1) High perturbation (0.8, 0.8)
t=200 t=400 t=200 t=400 t=200 t=400

40 active 90.52 93.11 90.54 93.15 90.29 93.01
40 passive 81.76 84.58 80.98 84.43 80.36 84.14

Table 4 Comparative results for 40 adaptive agents that scale generosity as well

Evaluation. The motivation behind these experiments has been to show that the social
learning (or cooperation) problem owes its existence to the presence of large (genetic)
variations in the agents’ program. I have also tried to understand if there is a relation
between the degree of environmental perturbation and the adaptation mode. To tell the
truth, I was expecting the active approach (the christian one) to prevail in more
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predictable, less perturbed and hence more controllable, environments, and the passive
approach (the buddhist one) to prevail in more unpredictable environments, where
agents’ actions might all too often be in vain. Clearly, this is not the case : the passive
approach is always more attractive, regardless of the specificities of the environment
(Borges (1976) traces “buddhist” trends throughout the history of western culture,
from Heraclitus to Schopenhauer and to Bergson). Moreover, for agents that try to
learn the optimal adaptation mode, it has been impossible to stabilize to such a mode,
because we cannot find a safe success criterion for a mode. This could suggest that if
christianism and buddhism have prevailed respectively in different environments, this
is surely a result of meme spreading (Heylighen (1992a,b), Gabora (1993)) ; how
these memes made it there and so successfully, remains an enigma. Another
observation concerns the temporal behavior of the two adaptation modes : the active
one stabilizes quickly to a large value, while the passive one goes on improving for a
long time. Perhaps this means that with a given life-time the active approach is
ensured to lead to some more-or-less satisfactory state, while the passive approach has
to resort to the evolutionist idea of perpetual reincarnation and chance renewal 8

(assuming that all the rest is equal between the two approaches). Finally, the extreme
active mechanism which includes generosity scaling, seems so unnatural (since it
invites exploitation) and so difficult to develop by itself (albeit, admittedly, very
effective!) that christianism’s claim looks logical, that it took a major event to
discover it, the incarnation of the god’s son himself.

4 Security and stability in an artificial economy :
Diversity in structures

The second example that made use of the quantitative tit-for-tat model was an
artificial economy. An artificial economy is a population of agents that receive salaries
and make expenses, i.e. consume. The dynamics of the system become interesting
once we define heterogeneous agents that react differently to the social situation (the
“social object” used for interaction is the consumption of different agents). The
satisfaction criterion for agents is to be able to spend as much as they intend to. An
agent is therefore satisfied if intended_ consumption safe* threshold≤ , where the
threshold in this case expresses a security factor and safe stands for the agent’s
cumulative surplus over time. Usual “rational” agents are supposed to have high
satisfaction values according to the above criterion, since their consumption intentions
are not irrational. It should be stressed that we are not simulating the evolution of
prices or any other financial-type phenomena, like in Beltratti & Margarita (1992),
Nottola et al. (1992), de la Maza & Yuret (1994), Benos & Tzafestas (1995). We
purport, instead, to show how individual motivations and predispositions toward
social structures give rise to intricate social phenomena.

At each cycle an agent receives its salary (s) and computes its intended consumption
level as c*random_factor, where c is the associated cost and random_factor is a
random between 0.9 and 1.1 (the actual cost won’t be exactly the same at each cycle).
On top of this regular consumption, the agents make investments periodically (every
Ti) that are computed as (s-c)*Ti*threshold*a_random_factor, where a_random_

                                                          
8 It is a pity that the presence of the word “Zen” in the title of Ray (1994) was just a joke.
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factor is as before (this corresponds to a “preplanned” investment which is consistent
with the agent’s rationality). We have defined three types of consumer agents :

• Rational consumers. Agents that act as above. This appears as a conservative
regulation of their expenses and that allows them to make investments
occasionally. They show some kind of social adaptation by “mimicry” since they
drift their expenses toward the social average (i.e. the input) to a degree of 10%.
The a(), b() and f() functions are a(x)=x, b(x)=safe*threshold (= the maximum
consumption allowed) and f(x)=intended_consumption+0.1*(x-intended_
consumption).

• Aggressive consumers. They don’t do any investments. Instead, they want to show
off at times, by spending more than everybody else (actually, more than the average
during the previous cycle). Aggressive consumers have a threshold of 1 (they might
spend all they have at once). Their aggressivity is again expressed periodically
(every Ti) and their f() function is then f(x)=max(x*(1+aggressivity),
intended_consumption), where aggressivity is an additional parameter that takes a
value between 0.5 and 1.

• Scrooge consumers. They appear as very insecure. They differ from the previous
two types of consumers in their perception filter. While all the others are satisfied if
their intended expense does not exceed a security level, those scrooge agents are
satisfied if the external perceived average expense does not exceed this level
(f(x)=x). Every time this condition is not met, they (absurdly to an observer)
decrease that security level by using the formula threshold=threshold-
(x*insecurity/safe), where insecurity is an additional behavioral parameter ranging
from 0.5 to 1. They make no investments either and they demonstrate no social
drift.

Experiment 1 : Rationality versus variability versus aggressivity. We simulated
populations of 15-20 rational agents with cost and salary variabilities (from 1 to 10,
with cost<salary) and random thresholds between 0 and 1. The average degree of
satisfaction in the case of 2<salary<3, salary/10<cost<salary was found to be around
95% and to have a slight decreasing tendency with the degree of variability.
Experiments for long periods (around 500 cycles) and a lot of agents (around 100)
with high variability showed that the average satisfaction would never fall below 90-
92% in any case. This is an indication that the agents’ satisfaction is not sensitive to
social variability, as long as the agents are rational. We then simulated mixes of
populations : 20 rational agents with 1 to 10 aggressive ones. As was expected, the
average agent satisfaction dropped immediately and was found to be around 85-90%.
By inspecting individual agents we observed some marginal unsatisfactory agent
cases : moderately aggressive agents that have a cost/salary ratio close to 1, rational
agents with high insecurity and highly aggressive agents independently of cost-salary
relation. Moreover, while a rational agent’s safe value tends to increase slowly, an
aggressive agent’s satisfaction state becomes worse and worse as time goes by. Of
course, not all aggressive agents with low cost/salary ratio end up unhappy : slightly
aggressive agents with low cost/salary ratio tend to behave only slightly worse than
rational ones. Next, we simulated mixes of populations of rational, aggressive and
scrooge agents. The qualitative behavior of rational and aggressive agents did not
change, while scrooge agents converged to one of the following two behavioral
profiles : scrooge agents with moderate or low insecurity and low cost/salary ratio
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tended to be as happy as rational ones, while those with high insecurity or high
cost/salary ratio tended to stabilize to a constantly unhappy state. As a general
observation it can be said that, as was probably expected, the scrooge agents are
marginal -they don’t really participate to the social context- while the rational ones are
not too much affected by the presence of aggressive agents, unless they are really too
poor. Those latter agents may become very unhappy, if the social environment allows
it.

Experiment 2 : An uneven economy. Next, we proceeded to simulate economies with
two classes of agents, the rich ones (salary from 30 to 40) and the poor ones (salary
from 2 to 10), with cost from salary/10 to salary. We simulated a population of 80
rational agents with the probability of an agent being poor 50% and 90%. The average
satisfaction has been found inferior to that of the classless society and the less satisfied
agents have been found to be the extremely poor (low salary and high cost/salary
ratio) and rather insecure agents. On rare runs, some rich agents were found unhappy
due to high insecurity. We repeated the simulations with a mix of 50 rational and 50
aggressive agents and the average satisfaction has been found even lower : the reason
is the presence of unhappy aggressive agents ; aggressive agents tend to be more
unhappy if they are poor and the higher their aggressivity, the less significant the role
of the cost/salary ratio.

Experiment 3 : Exogenous perturbations. To investigate the stability of the economy
and its resistance to exogenous perturbations, we ran twice a mixed 85-agent
population -with all three types of agents and salaries between 2 and 10 (for every
agent, cost was between salary/10 and salary)- for a period of 160 cycles. During the
first run and at t=80, we increased each agent’s cost to a value between
(salary+cost)/2 and salary, leaving salary intact. During the second run and again at
t=80, we increased all agents’ salaries by a factor from 1.5 to 3. In the first run we
observed that rational agents’ satisfaction was not much affected by the perturbation,
especially for those of high or moderate security, while aggressive ones deteriorated
proportionally to their aggressivity. Scrooge agents satisfaction state remained fairly
stable as well -because after rising costs the other agents were spending less on
average. In the second run we observed the inverse phenomena, of rational agents that
stabilized after the salary increase, highly aggressive agents that suffered less during
the second phase -because they could then satisfy their passion (genetic defect)- and
more or less degrading scrooge agents.

Experiment 4 : What does it take to kill an agent ? Once certain about rational
agents’ resistance to perturbations, we tried to examine under what conditions
aggressive or scrooge agents might become very unhappy. Again, we simulated the
above 85-agent mixed population for a period of 160 cycles. At t=80, we introduced
20 rational but “alien” agents (with salaries between 20 and 30 and for each agent cost
between salary/10 and salary/2, i.e. sufficiently small). We assumed that those agents
had been brought up and had stabilized in a different, much more wealthy,
environment and that they were injected into this economy somehow by force. As was
expected, poor but highly aggressive agents (cost/salary ratio close to 1) were driven
to despair : aggressive agents, previously stabilized to a satisfaction of 50-70%, might
fall down to 20-30% after the aliens’ intrusion. We also simulated an economy of 60
heterogeneous agents for a period of 160 cycles. At t=80 we introduced as above 20
alien agents, but this time the agents were aggressive. By inspecting the agents
throughout the run, we observed that the highly insecure scrooge agents’ satisfaction
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degraded significantly during the second phase : agents whose satisfaction had fallen
from 35% to 25% during the first phase were found to degrade up to 10% during the
second phase (actually, the degradation is greater than those figures show, since they
correspond to average satisfaction from the beginning of the experiment).

Evaluation. Our motivation for running those experiments was to investigate how
stable such an artificial economy is to different kinds of perturbation and how robust
each of the individual agent types is. It can be deduced from the experiments that the
rational agents are the most robust to all kinds of perturbations that have been studied,
hence they are less liable to manipulation ; they show some drift toward the social
standards, but this enforces, rather than breaking rationality. Both aggressive and
scrooge agents are unstable and not robust because, unlike rational ones, they don’t
reason in terms of their internal needs (relation between cost and salary), but their
behavior is more context-dependent, i.e. they can be easily manipulated. Furthermore,
if given the chance, the aggressive agents have the potential to cause instability in the
population. The difference between aggressive and scrooge agents is that the former
ones are irrational in acting, while the latter ones are irrational in sensing. This is
why the aggressive agents may become really dangerous for the other agents, whereas
the scrooge agents are only dangerous to themselves.

5 Productivity, insulationism and social groups :
Diversity and mobility

In this last series of experiments, we have been trying to see to what extent the model
supports side-effect phenomena of cooperation and non-cooperation, like the
formation of spatial structures, distributions etc. We assume a population of agents
situated in a small-size grid-shaped world. Each of the agents may execute a number
of operations (it could be, for instance, different types of assembly operations in an
industrial assembly cell) and has a measure of its productivity (it could be execution
time). The goal is for agents to maximize their participation in the production process
by working at maximum speed ; we assume that agents may detect average social
productivity in their position and compare it to their own. The satisfaction criterion for
agents is to participate in a social (territorial) group whose average productivity is not
too small compared to their own. If this criterion is not satisfied, the agents will tend
to flee by moving elsewhere (the assembly robots would shift to a neighbouring cell),
so that mobility is a side-effect of defection. According to the above, the f(), a() and
b() functions are : f(x)=x, a(x)=speed and b(x)=0 (with flight as a side-effect). The
threshold is defined as threshold=speed*tolerance, where tolerance takes a value
between 0 and 1. It is important to note that, in this context which involves
territoriality (clustering), there is no need for a special kin recognition mechanism,
like it is put forward by Hamilton (1964), even if the environment is a competitive
medium. The results of actions themselves are an indication of the proportion of kin in
the group ; this appears as an indirect kin recognition mechanism. Of course, this
makes sense only in long interaction sequences, as the analysis of Axelrod &
Hamilton (1981) reveals.

Experiment 1 : Variations and the need for aggressivity. We simulated a population
of 15 agents distributed over a 3x3 grid for a period of 40 cycles. We performed four
runs : with only four agent speeds (0.25, 0.5, 0.75, 1) or with random speeds between
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0 and 1, and with tolerance=0 or tolerance between 0 and 1. The average population
satisfaction was found larger in the case of four speeds than in the case of random
speeds and higher in the case of random tolerance than in the case of zero tolerance.
By closely inspecting individual agents, we found that the most happy agents were the
least productive ones independently of tolerance, because, although they had to flee
quite often, they were happy in almost any group. Inversely, the most unhappy agents
were the highly productive and a little tolerant ones because they couldn’t actively
seek satisfaction by chasing other significantly slower agents ; instead, they had to rely
on the slower agents’ possibility to detect social un-satisfaction so as to flee. Clearly,
the behavior of the population looks sub-optimal, since slow, but highly tolerant,
agents never flee. What appears necessary is a mechanism for direct aggressivity and
an aggressivity that would be perceivable by all agents as an additional cue for social
un-fitness.

Experiment 2 : What aggressivity really is. The new modified model for the
aggressive agent is shown in figure 2. Now the agent’s satisfaction is defined as
detection of cooperation and absence of aggression. We repeated the four previous
runs, this time with aggressive agents and the average satisfaction was found to be
better in all cases by a factor of 1.5 to 2. Agents’ behavior appeared more natural and
more balanced : an agent tended to chase slower agents and flee away from faster
ones. Obviously, faster agents usually chased others more often than they fled. To
better observe the comparative advantage of aggressivity, we compared the dynamics
of the same 15-agent population with random tolerance and speed when defined as
kind and when defined as aggressive. The improvement of average satisfaction with
aggressivity has been found dramatic : the 20-30% satisfaction of kind agents would
rise up to 80-90% in the aggressive case. Inspection of individual agents also revealed
that aggressivity allows to highly fast and only a little tolerant agents to be maximally
satisfied. It seems therefore that in this context aggressivity is not a particular
motivation of the agent to chase others but a deadlock avoidance and conflict
resolution mechanism. Observations similar to this one were drawn by Galliers
(1990). It is also noteworthy that in this case the most unhappy agents are found to be
-somewhat counter-intuitively- the stronger/faster ones, who may be manipulated in
this sense by external forces. This is no longer strange, once we observe that an
agent’s internal need is in fact proportional to its productivity/strength/speed.

Aggressive behavior

If perception(social_ stimulus) T≥ ,
then

if there is aggression in the environment
if I am angry (from the previous cycle)

“previously angry, I assume everything is alright now,
I return to normal state and I give a new chance”
output a(perception )

else “hostile environment,
since I am not angry, I am probably the cause for
others’ aggression, so I defect and flee”
output b(perception) and flee as a side-effect

else “everything is fine”
output a(perception)

else “I am stronger than the others, so I aggress, but output normally”
output a(perception) and aggress as a side-effect

Figure 2 The aggressive agent (with 1-step memory)
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Experiment 3 : Aggressivity and insulationism. Next, we tried to investigate to what
extent the model favors insulationism of agents. To this end, we run the same
population of 6 (aggressive) agents in a 3x3 and in a 2x2 grid for a period of 40
cycles. In the beginning of the run, all the agents were placed in the same, randomly
chosen, position in the grid. In the end of the run we found that, when in the 3x3 grid,
the agents distribute themselves over the grid ending up alone in a position, while in
the 2x2 case there were two pairs of agents and two loners. In both runs, the average
agent satisfaction was the same (95%) and the same was true of the average number of
moves (0.83) and aggressions (0.5). Furthermore, in the 2x2 case, both pairs of agents
comprised a rapid, yet tolerant, agent and a slow one. As a result of the above, it may
be said that a sufficiently large world allows for agents to isolate themselves, while a
smaller world forces them to seek compromises with other agents. Clearly, the
important factor in such a costrained world is tolerance.9 Those compromises might
be perceived by external observers as cases of what Trivers (1971) called “subtle
cheating” (where the deceived agents persist to this sub-optimal “choice”, because it is
less costly than the complete absence of interaction).

Experiment 4 : It’s not crazy, it’s different. Another phenomenon that deserved study
was the presence of speed variations non-uniformly distributed over the space of
possible values (from 0 to 1). To this end, we performed two runs with a majority of
15 similar agents and a single very different agent in a 3x4 world. The first run
involved a majority of rapid agents (with speeds from 0.8 to 1) with low tolerance
(0.2) and a unique slow agent (initialized with a random speed from 0.1 to 0.2) with
random tolerance, while the second one involved a majority of slow, moderately
tolerant agents (with speeds from 0.1 to 0.2 and tolerance=0.5) and a single rapid
agent with low tolerance. In the first run we observed that the rapid agents formed
clusters quickly (by t=10 they had stabilized), while the slow agent “wandered” over
the grid until it finally ended up alone somewhere. Of course, putting a large
population of rapid agents that distribute over the whole grid leads to the slow agent
wandering indefinitely. In the second run the dynamics were the inverse : the rapid
agent quickly chased all those in its position and ended up alone ; the chased agents
stabilized immediately elsewhere in the grid.

Experiment 5 : Sociality cannot be forced. To make up for this potential for
insulationism, we added a sociality bias (during flight the agent would not choose an
adjacent position randomly, but it would choose the highest populated one). We then
repeated the two above runs twice by using aggressive agents during the first and
socializing ones during the second. It was found that in the case of a highly productive
majority a cluster of highly tolerant agents quickly emerged that accomodated the
slow one, while in the case of an unproductive majority there was no difference with
before : once more, the highly productive agent found himself alone soon. This is an
indication that sociality should be more explicit to favor social clusters : the agents
should have another, more direct, kind of (again selfish!) benefit by sticking together,
such as another social task whose satisfaction will depend on the mere presence or
even on the number of agents around (alliances of primates are an example of such a

                                                          
9 It might be interesting to investigate whether scaling tolerance is feasible, by analogy to section 3
above.
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process), so that the agents would try to compromise between apparently conflicting
motivations.10

Experiment 6 : Self-organization. To investigate the potential of the model for self-
organization, we performed a run where, after the system had stabilized spatially, we
re-initialized the agents speeds to different values, in order to inspect the new dynamic
behavior. To accentuate the observable phenomena, we run the experiment with 15
slow, moderately tolerant and a single rapid and little tolerant agent for a period of 80
cycles. Speed re-initialization occurred at t=40, after the initial population had
stabilized. Given this distribution of agents the system stabilized in comparable times
in both phases of the run, as was expected. The important observation to draw is that
the population’s self-organization potential is such that it will try to find a new stable
state if there is one. Statistically, and if given enough time, it will. If the environment
is changing more rapidly than the average transition between stable states, the agents
will appear as being after a Sisyphus task, where once close to a stable state (nirvana),
all the work accomplished will “magically” disappear and they will have to start over
anew.

Experiment 7 : Conflicting motivations and social groups. The last experiment
consisted in testing the potential for compromise between conflicting motivations. We
then defined motivations that were triggered positively by some values of the social
stimulus and negatively by others ; the two sets of positive and negative trigger values
were disjoint and their union was the whole set of possible values for the stimulus.
Now the agents’ motivations receive both positive and negative feedback and the f()
function becomes : f(x)=max(f(+)-f(-),0), where f(+) and f(-) denote respectively the
averages of positive and negative values of the social stimulus involved. A run of 15
agents in a 3x3 grid for 400 cycles revealed, as was expected, that the agents formed
clusters according to matching positive triggers. A final run with agents having two
quantitative tit-for-tat tasks showed that the complexity of the “emergent” phenomena
may rise unexpectedly on the possibility of variants, as long as the agents seek
individually to maximize satisfaction by compromising different, possibly conflicting
motivations.

Evaluation. The potential of simple, local rules to account for complex spatial
structures is by now a commonplace (see, for example, work in cellular automata,
Wolfram 1986).11 What we have attempted to demonstrate with these experiments is
the versatility of social phenomena that a parameterizable and adaptive reciprocal
agent model, like the quantitative tit-for-tat model, may account for. Phenomena such
as cluster formation and territoriality, self-organization, stability, but also the role of
aggressivity, direct sociality and conflicting motivations, have become apparent in the
simple case studies presented.

                                                          
10 Humans are fortunately unlike animals in that they are able to scale this sociality, to learn different
things and somehow “choose” to become social -or the opposite...
11 The combined role of diversity and spatiality for the evolution of cooperation has been stressed in
(Nowak & May 1992), (Nowak et al. 1995).
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6 Lessons

We have presented a model of social behavior based on reciprocity and participation
(implicit kinship). The model is a generalization of the well-known tit-for-tat model :
generalization consists in having continuous satisfaction functions and cooperation
criteria and giving room to parameter variations. After conducting those above case
studies in social phenomena, we may now summarize the model’s interesting features
and its potential for further research :

• All agents are trying to solve their own instantiation of the one and only problem
there is : individual satisfaction maximization (often called hedonism). Individual
instantiation shows in the presence of different filtering mechanisms, satisfaction
functions etc. This genetic variation may lead to complex phenomena such as
formation and destruction of spatial clusters. The model also lends itself to
adaptivity, as is demonstrated in section 3. This adaptivity and the possibility to
scale the adaptation mechanism by continuously ascending levels is a good
foundation for evolvability of the agents toward higher-level, more “cognitive”
possibilities. Other extensions may be envisaged, too : combination of territoriality
with adaptation (which could lead to speciation), integration with non-social tasks
etc.

• Stability is a consequence of variations and interactions (“The real cause of
stability in a distributed system is sufficient diversity”, Hogg & Huberman (1992)).
The dynamics of the system may become much more intricate when perturbations
occur and the robustness of the system is not ensured when those perturbations are
frequent and acute enough. Potential for self-organization is a consequence of the
dynamic implicit kinship recognition mechanism ; of course, we always run the
risk of having this self-organizing process turn into blind opportunism (free riders
situation). These observations also imply that societies of quantitative tit-for-tat
agents may be studied and analyzed using dynamical systems theory, as in
(Huberman & Hogg 1988), (Hogg & Huberman 1991), (Huberman & Glance
1994).

We have emphasized on simulation rather than on analysis in an attempt to show the
versatility of potential “emergent” phenomena. To give an idea of the complexity of
the analysis of such a system, let us take the basic model of figure 1 for the case of
two agents. The social interactions between two agents may be classified to one of
four types (Hamilton 1964), as table 5 suggests.

Sender Receiver
+ -

+ mutuality deceit
- eavesdropping spite

Table 5 The four types of agent interactions according to Hamilton (1964)
(+ and - denote the change in an agent’s fitness after the interaction)

Agent i (i=1,2) may be completely specified by the quadruplet (Ti, ai(), bi(), fi()).
Mutuality emerges in the case of y(1)=(a1(f1(1))+a2(f2(1)))/2>max(T1,T2), where y(t) is
the social stimulus quantity after t cycles. Spite emerges when y(1)<min(T1,T2). In
between lie a number of cases of eavesdropping/deceit (the two phenomena are
complementary : if one agent plays first and gets eavesdropped, it is as though the
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other one was playing first and was deceiving12). Eavesdropping/deceit will be
continuous, i.e. the deceived agent will never “understand” it is being deceived, if
(assuming agent-1 is the eavesdropper) :

f (y(1) T1 1≥ , f (y(1) < T2 2, with y(1)= (a (f (1))+a (f (1))) / 21 1 2 2 ,
f (((a (y(t))+b (y(t))) / 2) T1 1 2 1≥ , ∀ t=1,2...,
f (((a (y(t))+b (y(t))) / 2) T2 1 2 2< ,∀ t=1,2...,
with y(t)=a1(f1(y(t-1)))+ b2(f2(y(t-1)))/2.

If there exists a t such that at least one of the above inequalities does not hold, this is
the moment of time that the system will fall back on spite. Assuming more than just
two agents specified by different quadruplets, we can easily see that the complexity of
the analytical equations that describe the system rises tremendously.

Looking deeper into the inequalities, we may also observe that agent-i may be defined
as “rational” if

f (x) T f (a (f (x))) Ti i i i i i≥ ⇒ ≥ , and
f (x) T f (b (f (x))) Ti i i i i i< ⇒ < 13.

These inequalities mean that an agent is rational if he treats the results of its own
actions rationally, i.e. if he detects the outcome of a cooperative/non-cooperative
action of its own as cooperative/non-cooperative, respectively ; otherwise, and
depending on the interaction context, he may appear as either a sucker or a con man.
Of course, very few agents can be thought of as obeying this rule : most of the times,
we encounter agents that have sophisticated filters and are inclined to believe, for
instance, that they are smarter or better informed than their neighbors, or that they
have some other kind of relative advantage. The a(), b() and f() functions have
therefore a predictive role and adapting these functions corresponds to belief update.
In this sense, reactivity is no more than an implementation principle and mechanism ;
in essence, the reactive agents have reactions pre-planned by their designer (this point
was also made by Drummond (1993) and McFarland (1991 & 1992)). Those reactions
are therefore based on “predictions” that may be adaptive, so that reactivity is no more
reactivity to an action, but reactivity to the meaning of an action or cognitive
reactivity, as Castelfranchi (1993) defined it.

Returning to the issue of rationality, a consequence of individualistic and local
motivation and perception structures that vary genetically from agent to agent is that
talking about globally rational agents does no more make much sense. Pollock (1993)
argued that rationality, which he defined as “the tool for living the good life”, is
context-dependent and is constrained by the agent’s knowledge, abilities and
environment. The aggressive and scrooge consumers that manage to “survive” (be
happy) in the artificial economies of section 3, do so because their internal parameters
allow them to interact with the “rational” consumers in a way that makes everybody
happy. It follows then that the aggressive and scrooge agents are no less rational than
the others, since they manage to live a good life as well ! Looking deeper into what the
supposedly “rational” or “irrational” economic agents do, it has been shown that the

                                                          
12 Note, however, that in this case, the deceiving agent is the one that defects while the other cooperates,
whereas in participation contexts the agent that defects is always a loser.
13 If a(), b() and f() are linear functions, a(x)=kax, b(x)=kbx and f(x)=kfx, these inequalities translate into
kb<(Ti/kf

2)<ka -note how the presence of the filtering function f() changes the shape of the perception
space.
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“rational” ones are less manipulable than the others (and this without possessing any
higher cognitive abilities). The reason is that their actions/decisions are based more on
internal than on external factors, so that their responsiveness to unexpected events is
low : in this sense, what appears as rationality is in fact conservativeness and
resistance to change/innovation.14 Note, however, that the average consumption of
the economy increases slowly with time and this thanks to those aggressive agents.
The social innovation and “progress” is therefore due to the presence of more
manipulable, self-catalyzing agents (whether this “progress” serves a particular
purpose is yet another story).

A final consequence of selfishness and individualistic rationality is that stability in
social groups is precisely the result of heterogeneity and complementarity, as in the
case of agents that need to form large working groups. This is achieved through
variation between agents, which might be genetic or a result of differentiation through
adaptation during life-time ; additional examples and a more extensive discussion of
variation and differentiation appears in (Tzafestas 1995b). For example, we have seen
above that the “rational” consumers are stable to all kinds of perturbations. So, what
are “irrational” agents for ? The answer seems to lie in the social “progress” as
defined above. If there is any reason to look for progress -in the sense of innovation-
then we would better introduce such “irrational” agents that would ensure the social
drift ; on the other hand, to guarantee stability of the society, the proportion of
irrational agents should be low. Such a heterogeneous stable society is nothing else
but an autonomous super-agent and stability nothing else but self-consistency of this
super-agent.

7 Other related work

Besides work in evolutionary games and cooperation, the proposed model has also
been partly stimulated by the Eco-Problem-Solving paradigm (EPS) and work in
autonomous agents action selection (Maes 1989) (Ribeiro et al. 1992). EPS (Ferber
1989) (Ferber & Jacopin 1991) relies on an agent model possessing three binary state
variables (satisfaction, flight, liberty), defining a total of six states (there are three
unreachable/impossible states) and a set of primitive actions that change the values of
those variables (Ferber & Jacopin 1990). The model has been used successfully to
solve classical AI problems (Ferber & Jacopin 1991) (Drogoul 1993) traditionally
tackled by planning methods. However, this paradigm does not include a measure of
cooperation that might be used to direct a multi-agent system toward a collective
consensus, since satisfaction is binary ; therefore, it has been applied with success
only to cases that involve not cooperation but (spatial) action coordination15. The need
for continuous satisfaction functions has been identified by researchers in the
autonomous agents field (for instance, Steels (1994a)) and traces its roots to work in
action selection (see, for example, the spreading activation scheme of Maes (1989),
and the hybrid approach of Ribeiro et al. (1992) that fuses spreading of activation with
eco-problem-solving principles). The necessity for such explicit representations of a
system’s behavioral goal, although not in the traditional sense of the term, has been
                                                          
14 It looks to me no coincidence that as people get older they become both more rational and more
conservative.
15 This formulation was given by Eric Jacopin.
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also stressed by Zeghal (1994) in the domain of motion coordination. Finally, an
approach to the sociality or cooperation problem by action learning through different
types of reinforcement appeared in Mataric (1994) ; this last approach differs from
ours in that we assume genetically determined actions and only parameter learning, if
any at all.

8 Conclusions and perspectives

The above discussion and experiments have shown that the presented model possesses
some key properties (adaptivity, scalability, variability) that make it a valid candidate
for pursuing research in social behavior themes (including cooperation). The target
behavior of the model is not limited to game-theoretic contexts, but involves more
general participant relations, where agents “create” their own game dynamically
without being subject to an externally forced static reward scheme. Diversity in
parameters and structures gives rise to some intricate emergent phenomena ; on top of
these, mobility induces elaborate spatial structures, such as clusters, formations etc.
Conservativeness, in the sense of resistance to change enforces social stability, but has
to be coupled with a diversity generator (or irrationality) in order for social standards
to evolve.16 The overall result in view of our long-term goals is that this model may
account for a number of dynamic phenomena that may serve as a basis for the
emergence of higher-order organizations (such a promising phenomenon is, for
example, the formation of agent clusters in section 5).

Two immediate applications envisaged are the modeling of autonomous mobile robot
cooperation tasks, such as the one described by McFarland (1994) and Steels
(1994b)17, and the distributed or cooperative problem solving, in the same line that is
followed by Hogg & Huberman (1992). Further work includes a study in speciation
and a study of the impact of diversity in an evolutionary context. Finally, we started
investigating the role of sociality and cooperation for the emergence of higher-order
organizations in (Tzafestas 1995c).
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