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Abstract
We analyze the Iterated Prisoner’s Dilemma and the
performance of GRADUAL, the best behavior found so far.
This behavior has the undesirable property of permanent
memory, which would be detrimental for stability. As a
solution to the permanent memory problem, we propose an
adaptive tit-for-tat behavior that uses a self-regulated
estimate of the opponent’s friendliness. On a second level,
we demonstrate that an additional self-regulation loop,
parallel to the first, is necessary to ensure performance
comparable to GRADUAL’s. A number of theoretical
conclusions are drawn, the most prominent being that the
actual cooperative potential of the behavior is the by-product
of the double self-regulation loop and that the second
regulation loop concerns the parameters that define the
temporal dynamics of behavior. Our results trigger a
discussion on stability as well as on the nature of the
cooperation problem itself.

1.  Introduction
A major issue on the intersection of artificial life and
theoretical biology is cooperative behavior between selfish
agents. The cooperation problem states that each agent has a
strong personal incentive to defect, while the joint best
behavior would be to cooperate. This problem is
traditionally modeled as a special two-party game, the
Iterated Prisoner’s Dilemma (IPD).

At each cycle of a long interaction process, the agents play
the Prisoner’s Dilemma. Each of the two may either
cooperate (C) or defect (D) and is assigned a payoff defined
by the following table.

Agent Opponent Payoff

C C 3 (= Reward)

C D 0 (= Sucker)

D C 5 (= Temptation)

D D 1 (= Punishment)

Usual experiments with IPD strategies are either
tournaments or ecological experiments. In tournaments,
each strategy plays against all others and scores are summed
in the end. In ecological experiments, populations of IPD
strategies play in tournaments and successive generations
retain the best strategies in proportions analogous to their
score sums.

The first notable behavior for the IPD designed and studied
by Axelrod (Axelrod & Hamilton 1981, Axelrod 1984) is
the Tit For Tat behavior (TFT, in short) :

Start by cooperating,

From there on return the opponent’s previous move.

This behavior has achieved the highest scores in early
tournaments and has been found to be fairly stable in
ecological settings. TFT demonstrates three important
properties, shared by most high scoring behaviors in IPD
experiments :

· It is good (it starts by cooperating)

· It is retaliating (it returns the opponent’s defection)

· It is generous (it forgets the past if the defecting
opponent cooperates again).

Further strategies include stochastic ones (Nowak &
Sigmund 1992), the Pavlov strategy (Nowak & Sigmund
1993) that cooperates when it has played the same move as
its opponent etc. In the literature we may also find studies in
an evolutionary perspective (Fogel 1993), theoretical or
applied biological studies (Axelrod & Dion 1988, Feldman
& Thomas 1987, Milinski 1987) and studies of modified
IPD versions (Stanley et al. 1994).

The best designed behavior found so far in the literature is
GRADUAL (Beaufils et al. 1996) which manages to
achieve the highest scores against virtually all other
designed behaviors. This behavior starts by cooperating and
then plays Tit For Tat, except that it does not defect just



once to an opponent’s defection. Instead, it responds by
playing blindly (nxD)CC, where n is the opponent’s number
of past defections. That is, GRADUAL responds with DCC
to the first opponent’s defection, DDCC to the second, etc.
The justification given for the performance of this behavior
is that it punishes the opponent more and more, as
necessary, and then calms him down with two successive
cooperations.

The motivation for our work has been our conviction that a
behavior comparable to GRADUAL could be found, that
has not permanent, irreversible memory. Instead, we are
after a more adaptive tit-for-tat based model that would
demonstrate behavioral gradualness and possess the
potential for stability in front of changing worlds (opponent
replacement etc.).

Our medium term objective is to integrate such adaptive
cooperative behaviors together with regular task-achieving
behaviors in animats acting in simulated or artificial worlds.

Finally, another background motivation for our work has
been the will to apply the same regulation principles used in
(Tzafestas 1995b, chapters 4 and 5) and (Tzafestas 1998),
as another step toward the development of a regulation
theory.

2. Analysis of GRADUAL
Let us examine the high scores that GRADUAL obtains
against other behaviors. Designed behaviors found in the
literature usually fall in one of three categories :

· Behaviors that use feedback from the game, usually
cooperative behaviors unless the opponent defects, in
which case they use a retaliating policy (for example,
“tft” retaliates once, “grim” retaliates forever, “gradual”
retaliates increasingly long, etc.).

· Behaviors that are essentially cooperative and
retaliating, but start suspiciously by playing a few times
D in the beginning, so as to probe their opponent’s
behavior and decide on what they have to do next (for
example, suspicious tft (STFT) and the “prober”
behavior of Beaufils et al. 1996)

· Behaviors that are clearly irrational, because they don’t
use any feedback from the game (for example, the
random behavior and all blind periodic behaviors such
as CCD, DDC etc.).

A behavior will maximize its score, if it is able to converge
to cooperation with all behaviors of the first two categories
and converge to defection against behaviors of the third
category. Steady defection against periodic behaviors is
necessary in order to achieve the highest possible score. For
example, in the case of CCD, a TFT agent converges
quickly to responding DCC and gets an average score of
(5+3+0)/3=2.66 per move. On the contrary, the same agent
(CCD) and the Always-Defecting (ALLD) agent get against
CCD an average score of 3+3+1=2.33 and 5+5+1=3.66 per
move, respectively. The GRADUAL behavior fulfills both
of the above specifications, because it responds with two
consecutive C’s after a series of defections, giving the

chance to STFT or prober behaviors to revert to
cooperation, and converges to ALLD against irrational
behaviors. A solution to the permanent memory problem has
to demonstrate the same property.

3.  The solution : Adaptive tit-for-tat
The adaptive behavior that we are seeking should be
essentially tit-for-tat, in the sense of being good, retaliating
and forgiving. Moreover, it should demonstrate fewer
oscillations between C and D. To this end, it should have an
estimate of the opponent’s behavior, whether cooperative or
defecting, and react to it in a tit-for-tat manner. The estimate
will be continuously updated throughout the interaction with
the opponent. The above may be modeled with the aid of a
continuous variable, the world’s image, ranging from 0
(total defection) to 1 (total cooperation). Intermediate values
will represent degrees of cooperation and defection. The
adaptive tit-for-tat model can then be formulated as a simple
linear model :

Adaptive tit-for-tat

If (opponent played C in the last cycle) then

world = world + r*(1-world), r is the adaptation rate

else

world = world + r*(0-world)

If (world >= 0.5) play C, else play D

The usual tit-for-tat model corresponds to the case of r=1
(immediate convergence to the opponent’s current move).
Clearly, the use of fairly small r’s will allow more gradual
behavior and will tend to be more robust to perturbations.

Now, let us simulate the behavior of the adaptive tit-for-tat
agent against all three types of behaviors described earlier.

For initially cooperative behaviors with feedback and a
retaliation policy, the model cooperates steadily and
converges quickly to total cooperation (as is shown in the
value of the world variable, see fig. 1 against grim or tft).

For suspicious or prober behaviors, the model plays exactly
like tit-for-tat, while the value of the world variable
oscillates around the critical value of 0.5 (see fig. 2 against
suspicious tft).

For periodic behaviors, the value of the world variable
converges quickly to oscillations around the characteristic
value of “number_of_C’s/number_of_D’s” in the
opponent’s period (see figs. 3 and 4 against CCD and CDD,
respectively).



Figure 1. History of the world variable during interaction
of the adaptive tit-for-tat agent with a tit-for-tat or grim
behavior (r=0.2, world(0)=0.5).

Figure 2. History of the world variable during interaction
of the adaptive tit-for-tat agent with a suspicious tit-for-
tat behavior (r=0.2, world(0)=0.5).

Figure 3. History of the world variable during interaction
of the adaptive tit-for-tat agent with a CCD behavior
(r=0.2, world(0)=0.5).

From the above, it can be seen that this first version of the
model suffers from manipulation of the world variable by
the opponent. This shows as stabilization of the agent to an
oscillatory behavior (as is the case against stft) or a steady
cooperative behavior against irrational agents (as is the case
against CCD). To bypass this problem, we exploited our
observation that different rates for cooperation and
defection (rc and rd, respectively) yield different results.
More specifically, we observed that the adaptive tit-for-tat
agent manages to get opponents such as stft or the prober to
cooperate if rc>rd, while it manages to fall to steady
defection against periodic behaviors if rc<rd (see figs. 5 and
6, against stft and CCD).

Figure 4. History of the world variable during interaction
of the adaptive tit-for-tat agent with a CDD behavior
(r=0.2, world(0)=0.5).

Figure 5. History of the world variable during interaction
of the adaptive tit-for-tat agent with a suspicious tit-for-
tat behavior (rc=0.3, rd=0.1, world(0)=0.5).

Figure 6. History of the world variable during interaction
of the adaptive tit-for-tat agent with a CCD behavior
(rc=0.1, rd=0.3, world(0)=0.5).

Thus, what we need at this point is a method for the
adaptive tit-for-tat agent to discover whether the opponent
uses a retaliating behavior or is just irrational and to adopt
accordingly the proper rate setting. We have designed and
examined several such variants for estimating the
opponent’s irrationality and we have finally found the
following rule :



Throughout an observation window, record how many
times (n) the agent’s move has coincided with the
opponent’s move. At regular intervals (every “window”
steps) adapt the rates as follows :

If (n>threshold) then

rc = rmin, rd = rmax

else rc = rmax, rd = rmin

The rule may be translated as :

If (the world is cooperative enough)* then

rc = rmin, rd = rmax

else rc = rmax, rd = rmin

(*) recall that “my move = opponent’s move” is the so-
called pavlovian criterion of cooperation (Nowak &
Sigmund 1993)

Note that the agent drops its cooperation rate when the
world is assumed cooperative, and increases it otherwise,
that is, it uses negative feedback at the rate regulation level.

Another alternative interpretation for a cooperative world is
a world that tries to manipulate the agent (so as to get it to
respond with the same value found in the world). In this
case it makes sense to drop the cooperation (potential
manipulation) rate and become less adaptive to the world.

We have shown in simulations that the adaptive tit-for-tat
agent with the meta-regulation mechanism converges to the
proper behavior against both retaliating and irrational
agents. Figures 7 and 8 give the behavior of the meta-
regulated adaptive tit-for-tat agent against STFT and CCD.

Figure 7. History of the world variable during interaction
of the meta-regulated adaptive tit-for-tat agent with a
suspicious tit-for-tat behavior (rc(0)=0.2, rd(0)=0.2,
rmax=0.3, rmin=0.1, world(0)=0.5, window=10,
threshold=2).

Note also how the agent manages to differentiate between a
retaliating agent and an irrational one that has initially the
same behavior. Figure 9 gives the behavior of the meta-
regulated adaptive tit-for-tat agent against CDCD, that
resembles STFT in the beginning. The agent first assumes
that the opponent is retaliating and becomes increasingly
cooperative, but soon finds out that the opponent is actually
irrational and reverts to defection. Figure 10 gives the
corresponding rates.

Figure 8. History of the world variable during interaction
of the meta-regulated adaptive tit-for-tat agent with a
CCD behavior (rc(0)=0.2, rd(0)=0.2, rmax=0.3, rmin=0.1,
world(0)=0.5, window=10, threshold=2).

Figure 9. History of the world variable during interaction
of the meta-regulated adaptive tit-for-tat agent with a
CDCD behavior (rc(0)=0.2, rd(0)=0.2, rmax=0.3, rmin=0.1,
world(0)=0.5, window=10, threshold=2).

Figure 10. History of the rates for the experiment of the
above figure.

The meta-regulated model is insensitive to the initial value
of its world variable, provided that it is at least equal to 0.5
(remember that a tit-for-tat like behavior should start by
cooperating). However, even for a defective initial value of
the world variable, the adaptive agent may converge to
cooperative behavior against the tit-for-tat agent. In this
case, the resulting history is almost identical to the one of
figure 7. The model is also insensitive to the exact values of
rmax and rmin. Different values for the two rates will only
result in scaling or stretching of the curves, the qualitative
performance remaining intact. The same thing applies to the
values of the observation window and the threshold,



although they must be constrained so that the window will
be sufficiently large and the threshold sufficiently small
compared to the window. For example, a window of 5 with
a threshold of 2 or a window of 10 with a threshold of 6
cannot get to discover periodic behaviors and defect to
them. On the contrary, a window of 15 with a threshold of 3,
yields the same results as a window of 10 with a threshold
of 2, only stretched in the x-axis. Figure 11 gives the
behavior of the meta-regulated adaptive tit-for-tat agent
against CDCD for a window of 15 with a threshold of 3.
The reader is invited to compare this figure to figure 9.

Figure 11. History of the world variable during
interaction of the meta-regulated adaptive tit-for-tat
agent with a CDCD behavior (rc(0)=0.2, rd(0)=0.2,
rmax=0.3, rmin=0.1, world(0)=0.5, window=15,
threshold=3).

We performed extensive tournament experiments, as well as
a few initial ecological ones, with the behavior set used by
(Beaufils et al. 1996) that contains all three kinds of
behaviors, beside ADAPTIVE :

· GRADUAL

· TFT

· MAJOR_C Plays the opponent’s most frequent 
move, cooperates in case of equality

· GRIM Cooperates until the opponent defects, 
then defects all the time

· PROBER Begins by playing CDD, then if the 
opponent has cooperated on the 2nd

and 3rd move, defects all the time, 
otherwise it plays tit for tat

· PAVLOV Begins by cooperating, then 
cooperates if the two players made the 
same move (either C or D)

· STFT

· ALLC Always cooperate

· CCD

· DDC

· ALLC Always defect

· LUNATIC Cooperate or defect with equal 
probabilities

The tournament ranking of these behaviors is the following :

ADAPTIVE 39836

GRADUAL 39741

TFT 37395

MAJOR_C 36573

GRIM 35924

PAVLOV 34888

PROBER 32858

ALLC 31518

STFT 29881

LUNATIC 27816

CCD 27158

ALLD 26194

DDC 25995

The meta-regulated adaptive tit-for-tat agent’s behavior has
been verified against many other agents of the three types.
In almost all cases it has been found to converge on the right
behavior, either cooperation or defection, and this quickly
enough so as to slightly outperform GRADUAL. Two
notable exceptions are the OPPOSE behavior that returns
the opposite of the opponent’s last move (C on D and D on
C) and sparse periodic behaviors (for example,
CCCCCCCD). The case of the OPPOSE behavior is special
because it involves the potential for extreme exploitation by
the opponent. Actually, OPPOSE is a masochist behavior
and it will be happy to play against a sadist one. Clearly, our
adaptive behavior, being inherently “good”, cannot
demonstrate sadism, on the contrary it will try repeatedly to
establish cooperation with the opponent. Since this cannot
be achieved it will maintain oscillations forever. Note also
that the fittest behavior against OPPOSE is ALLD, just as
against ALLC! However, all good retaliating behaviors
(including TFT, GRADUAL and ADAPTIVE) always
cooperate against ALLC. Since there is no criterion for
differentiating between ALLC and OPPOSE in the long
term, a behavior has to demonstrate some degree of sadism
(responding to C with D), in order to be able to exploit
them. Similar things happen in the case of sparse periodic
behaviors, because a behavior has to ignore large periods of
C’s and converge to the ALLD behavior.

These observations bring us to the issue of stability in front
of perturbations, i.e., occasional defections. A stable agent
should be able to demonstrate some generosity and forget
all about it, provided that sufficient cooperative evidence
exists or is given afterwards.

The importance of resistance to perturbations may be
justified as follows : if an agent’s opponent is replaced by a



new one with a different behavior, the agent should be able
to react to the new opponent and minimize the effects of
past experience on its behavior. In everyday terms, often
enough our opponent in a game changes (for example, the
clerk that serves on us in the bank). In such cases, we should
be able to find the proper behavior against our opponent
without being tied too much to our previous idea about him,
and, if necessary, to altogether forget the past. This may also
be applied to a single opponent who, for some reason,
changes radically its behavior. In other words, true
cooperative behavior should be not only responsive but
adaptive as well. This is clearly not the case of the
GRADUAL behavior, because it becomes increasingly slow
in forgiving, or, equivalently, increasingly nasty.

A demonstration is the following : let us suppose that a
GRADUAL agent interacts with an ALLD agent (that
always defects) for 15 steps before the ALLD agent is
replaced by another newborn GRADUAL agent. A 1000-
cycle interaction between the two results to a score of 1051
for each one of them, while the first few steps are given
next :

GRADUAL CDCCD DDDCC DDDDD DDDDD CCDDD …

OPPONENT DDDDD DDDDD DDDDD CDCCD DDDCC …

This transcript shows that both agents become increasingly
defecting, hence obtaining lower scores, while we would
like them to be able to converge to cooperative behavior.
The same thing applies to the adaptive tft behavior, i.e., it
cannot always manage to converge to cooperation with a
fellow adaptive tft agent if the latter starts defectively. This
is so because, rather surprisingly, the defection rate is higher
than the cooperation rate (cf. figure 10), so that the agent
will need plenty of time before becoming cooperative
against its opponent. Some opponents (including newborn
adaptive ones) will not be patient enough to wait and will
revert to defection, too. Thus, the adaptive tit-for-tat model
is initially convergent to the proper behavior but is still
unstable.

The above observations suggest a rationality criterion :

A behavior is rational if it cooperates with itself.

Of course, this criterion is fulfilled for “good” retaliating
behaviors (i.e., behaviors that start by cooperating, for
example, tit for tat, gradual, grim, pavlov, adaptive etc.) if
the interaction starts from the beginning, without past
experience. This is however generally not the case if the
interaction starts from a point where one of the agents is in
defecting mode. For example, when tit for tat plays against
suspicious tit for tat, they alternate C and D : stft plays
DCDCDC… and tft plays CDCDCD…). A soft rationality
criterion may thus be formulated as :

A behavior is rational if it ends up cooperating with
an initially defecting version of itself.

A hard rationality criterion would be :

A behavior is rational if it ends up cooperating with
itself, even if they both start from defecting initial
conditions.

Fulfillment of this criterion would also allow the behavior to
resist to local perturbations, other than opponent
replacement. For example, in everyday settings it is often
the case that an agent’s move is perturbed by environmental
conditions or just misinterpreted by its opponent. A rational
agent should be able to overcome this local trouble and re-
converge to cooperation.

According to the above, our adaptive tit-for-tat agent may
be thought of as only half-adaptive, because it has reversible
memory and can apparently adapt to arbitrary new
environments, but is still unstable to perturbations. A full
adaptive model would be rational as well. We have no way
to know whether such a full adaptive model exists, and if so,
whether this model constitutes an Eldorado, i.e. a universal
solution to all our cooperation problems. In any case, it
appears that the true cooperation problem is essentially a
problem of adaptation and stability against perturbations
and may be studied “in the empty”, i.e. with an agent against
itself under varying initial conditions for all parameters
involved. An agent should therefore play against an
opponent as it would play against itself.

The difficulty of the stability problem described above is an
indication that the formulation of the cooperation problem is
perhaps too awkward to capture naturally some parameters
involved intuitively in the process, such as tolerance. A
continuous game model (like the one studied in (Tzafestas
1995a)) would be more allowable to such phenomena.

4. Theoretical discussion
We have shown above that the agent’s behavior is based on
a critical continuous variable (the world variable) that drives
its motivation to cooperate or to defect. This variable
represents for the agent an estimate of the friendliness or
hostility of the world; it has therefore cognitive value. By
regulating its own variable, the agent tries to get the world
to a stable value, preferably C, otherwise D.

The good performance of the behavior is ensured through an
additional self-regulation mechanism acting on the
adaptation rates. This is an important observation, since it is
compatible with the dynamical approach to cognition (van
Gelder and Port 1995), stating that the most important factor
in cognitive mechanisms is the nature of dynamics involved.
Note also that there is no need to have a rate dynamics other
than the “bang-bang” dynamics (high-low value), because
what counts is the relation between rc and rd, rather than
their absolute values.

The double regulation loop implies a different point of view
on the problem. While it has been traditionally tackled as a
score maximization problem, in our work we are proposing
the inverse point of view. The agent may be regarded as
trying to regulate within bounds some internal variables.
The regulated variables appear to be critical for an agent’s
survival or operationality, so that Ashby (1960) called them
essential variables. The buildup and reinforcement of the
world estimate in stable environments is a by-product of
agent self-regulation when a perturbation occurs. The
driving force of the agent’s behavior is thus the state of its



essential variables, whereas the final generation of
cooperative or defective moves constitutes the metabolic
part of the overall mechanism.

It is noteworthy that exactly the same qualitative
conclusions have been drawn in the cases of agents
exploring an environment with more or less uniform
distribution of sources (Tzafestas 1995b, chapters 4 and 5)
and of ant agents building and reinforcing trails to a food
source (Tzafestas 1998). In both cases, of course, different
cognitive variables and different types of first-level
adaptation are required.

5. Conclusions and perspectives
We have investigated the classical IPD problem and studied
the behavior and performance of the best behavior found so
far, GRADUAL. This behavior has permanent memory and
thus it does not constitute a good basis for a truly
perturbation-resistent adaptive behavior. What is necessary
is a regulation mechanism ensuring that the agent takes the
opponent’s behavior into account from a certain distance
without committing itself to it. On top of a basic regulation
loop that estimates the opponent’s friendliness or hostility, a
second regulation loop is introduced that acts on the rates of
the first one. The meta-regulation mechanism allows for the
agent to achieve performances comparable to that of
GRADUAL. Theoretically, the overall model relies on the
definition of a cognitive variable for the agent that is
adapted throughout the interaction with the world. The
adaptation rates that define the dynamics of the system
follow a bang-bang regulation dynamics between two limits
and this constitutes the meta-regulation loop. Overall, the
agents may be regarded as self-regulating some internal
“essential” variables, with the by-product being the final
cooperative or defective behavior.

As far as regulation is concerned, our approach has been
already validated in the past for the exploration problem in a
uniform source distribution and for the trail building
problem of ant agents and the same principles have been
found to apply. The next step is to formulate and solve in
the same way a few other classical artificial life problems,
such as robot cooperation in a closed ecosystem (Steels
1994) and action selection (Tyrrell 1993,1994). We hope
that the comparative study of the results and conclusions for
each of these problems will teach us a few lessons on
regulation.

From the pure cooperation point of view, we are currently
studying the rationality of the adaptive tit-for-tat behavior,
in the quest of the full adaptive or even the Eldorado
behavior. We also plan to conduct experiments with
different payoff matrices, in an effort to generalize the
model. Finally, we are preparing experiments on continuous
games.
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