
Experiences from the Development and Use of Simulation
Software for Complex Systems Education

Elpida S. Tzafestas*

Intelligent Robotics and Automation Laboratory
Electrical and Computer Engineering Department

National Technical University of Athens
Zographou Campus, Athens 15773, GREECE.

brensham@softlab.ece.ntua.gr
http://www.softlab.ece.ntua.gr/~brensham

Abstract. In this paper, we present our lessons from the design and use of two educational
software tools for teaching behavioral modeling to graduate students of digital art. The
tools, PainterAnts and VLab, allow the experimentation and control of simulated ants that
paint, or Braitenberg vehicle-like agents (Braitenberg 1984). To better address the target
audience of digital art students, we have transcribed both systems in ways that would
excite art students, that is, by finding graphical equivalents of behavior. This arrangement
allows us to exploit the users’ visual experience and motivation to manipulate and
experiment with complex visual forms. Experience with using the systems reveals that
the artists show a high motivation for experimenting with them, which is partly due to the
fact that they tend to regard them as simple abstract art tools that may produce interesting
complex forms. Our experience has also identified several methodological and theoretical
issues on educational system design that have been partly tackled and that merit extended
study and research.

1 Introduction

Within the framework of a master in digital art, we have developed a set of educational
tools for artificial life and the complexity sciences. These software tools constitute a
laboratory curriculum that is used to supplement the theoretical courses on the subject
and contain, among other things, an ant-based painting tool, called PainterAnts (Our
reference 1), and an educational tool for behavioral modeling, called VLab (Our
reference 2). “PainterAnts” is a special-purpose ant population demo that tries to convey
and teach regulation principles using graphical means. VLab allows the experimentation
and control of simulated robotic agents that are Braitenberg vehicle-like, and its purpose
is to make students familiar with simple behavioral modeling.

To better address the target audience of digital art students, we have transcribed both
systems in ways that would excite art students, for example in Vlab we have introduced
an additional behavioral parameter, the brush, used by the simulated agents to draw/paint

* Also with: Digital Art Laboratory, Athens School of Fine Arts, Peiraios 256, 18233 Agios Ioannis Rentis,
GREECE. tzafesta@asfa.gr, http://www.asfa.gr/~tzafesta

while moving around. This arrangement allows us to exploit the users’ visual experience
and motivation to manipulate and experiment with complex visual forms.

Both tools have been developed in Java on top of the RAGS software (Recursive Agents
Simulator), that is a testbed for simulation and experimentation in artificial life. RAGS
allows the recursive definition of agents that are composed of other agents at any depth
and the simulation of such recursive multi-agent systems. Furthermore, it allows the
definition of worlds with different spatial properties and the definition of observers of
statistical nature (for instance, data curves). Apart from these features, RAGS comprises
a set of interfaces that may be invoked automatically and dynamically during the system
operation. These interfaces allow the control of the simulation, the edition and/or
processing of all simulation components (agents, observers, worlds, etc.), as well as a
limited set of graphical programming functions.

In a more general line of work, the education of artificial life with the aid of graphical
tools allows us to put the user in the place of an external modeler that tries to understand
the operation of a system by forming a model of the system. In this sense, our long-term
objective is to study the relation between artificial worlds and the models that humans
construct about them.

2 PainterAnts

The goal of “PainterAnts” is to support teaching of regulation principles and their effects
by studying patterns of color in space. These patterns are generated in a distributed way
by a population of simulated agents, called painter ants.

The painter ant model is inspired from the model of an ant that gathers food samples and
brings them back home. Since there are generally many fairly big food sources in the
ants’ environment, the solution to the problem of food gathering is to allow the ants to
deposit and pick up chunks of another substance (“crumbs”). Crumbs therefore serve as a
communication means between agents and resemble the pheromones used by real ants. In
(Tzafestas 1998) we have presented an ant model that bypasses the problems presented
by previous models, by using a mechanism of internal crumb regulation. This model has
been transcribed to an ant painter model by replacing the variable “crumbs” with a
variable “color”, so that a painter ant deposits or picks up a quantity of color, while
seeking to bring food home. It is supposed that each position of the grid-based world has
a color that may be modified during execution.

The main interface of PainterAnts is shown in figure 1 and has two parts, the simulation
view or system view (right) and the processing/editing panel or control view (left). The
user may modify the agents’ parameters from the control view or from specialized popup
dialogs. In every case, the user may modify among other things the current color of an
ant. The control view allows also the modification of other simulation or worlds
parameters, such as the visibility of agents and objects, the selective visibility of color
components (R, G, B), the addition or deletion of food, the background color etc. Finally,
the popup simulation view menu gives additional possibilities, such as saving. Some
visual results of using the painter ant system are given in figure 2.

3 VLab

The goal of “VLab” is to support teaching of behavioral modeling by studying colored
robotic paths in 2D space. These paths are generated by one or more simulated robots or
“vehicles”, which can draw/paint on the canvas while moving around.

A simplified robot model, inspired from the Khepera robot (Mondada et al. 1993), was
adopted for supporting the vehicle models developed and examined. Each vehicle’s
sensors perceive stimuli sources and are directly connected to its motors that control
motion, without elaborate processing. The topology of the connections between sensors
and motors as well as the properties of those connections give rise to diverse behavioral
phenomena that have been identified and studied by Braitenberg (1984). Various
Braitenberg-type vehicle models are supported by the system. Beside behavioral
functionality, each vehicle is endowed with a programmable “brush” that its uses to
draw/paint on its environment while moving around.

The main interface of VLab is shown in figure 3 and, just like PainterAnts, it includes
two areas : the simulation visualization area or system view (right) and the
editing/processing area or control view (left). The user may modify the vehicles’
parameters from the control view or from specialized popup dialogs. More specifically,
the user may select the vehicle type, edit its parameters (velocity, sensors’ range, etc.),
control the type and intensity of environmental stimuli and program the brush. Finally,
the popup simulation view menu gives additional possibilities, such as saving. Some
visual results of using VLab are given in figure 4.

4 On users and learning

The students work was to try to understand the systems’ operation as well as the
individual effects of each of the ant or vehicle model variants. Around this central
educational goal of us, another three satellite goals of a methodological nature appeared :

• Learning to experiment. The artists, having practically no formal or even
fundamental scientific background, demonstrated a tendency to play around with the
system facilities, without any discipline or organization of observations and
experiments. It was immediately necessary then to have them follow manually certain
predefined experimentation protocols. The subsequent version of the tools will
encompass a set of predefined experiments with assorted protocols that will be
launched automatically upon user request. Since this particular need has been
identified, it will become necessary in the near future to clearly define in a
programming language (preferably a visual one) the concept and the structure of an
experiment.

• Learning to observe. Once the experimentation problem was identified and manually
tackled, we realized that it is even more difficult for the students to concentrate on the
detailed examination of the visual results of an experiment, for instance for
comparing two images and deducing reasonable qualitative results. Keeping
action/modification record files, as well as a very limited user action recording
facility, allowed the students to draw a few qualitative conclusions. Our medium term

goal is to introduce to the system a component for user-definition of the observation
method, for instance to compare the results after a thousand execution steps. This
component will have to rely on the same visual programming language as the
experiment description component mentioned earlier.

• Learning to learn. Finally, after having completed long series of experiments and
having observed the similarities and differences between them, a major part of the
users remain indifferent to the relation between a model and a result. What is missing
in our default methodology, is the personal involvement or participation of the user in
the system operation, which would incur a higher motivation for learning. In a future
version of the system, we plan to introduce to the system a set of specialized criteria,
so that different categories of users will have different but equally high motivations to
use the system and learn behavioral modeling principles, for instance ask to artists
questions such as “What can we do with only pure colors ?”.

Despite those methodological problems, we realized that the artists finally arrived at
establishing a stable user relation with both systems, even without having well
understood or evaluated the underlying behavioral models. The characteristics of this
user-system relation are as follows :

• Learning to use. In the beginning, the artists take the place of an explorer-user, who
starts manipulating and evaluating forms (indirectly, via experimentation with the
system parameters) mostly randomly. Then, they stabilize on a set of created forms
idiosyncratically selected, but they are ready at any moment to abandon the selected
form and restart from the beginning if they are not happy with the current state of the
form. Instead of learning to experiment with the systems and to observe, the artists
learn to use the systems as simple form creation tools, without actually controlling
them or even trying to control them.

• Desiring to modify the systems. After having acquired some experience with the
systems, the artists start desiring to create forms similar to the ones already created
and start searching blindly for the proper behavioral configuration. At this point, we
intervened and asked questions of the type : “How can you be sure that the form that
you have in mind exists and may be created with this system ?”. Hence at this point,
the artists start to really want to learn what the systems do, i.e. to describe and
understand the range of forms that the systems can support. As a consequence, the
artists start wanting to modify the systems according to their tastes, even if the
relation of a model with the resulting form is still little appreciated.

5 On tools and design

Simple behavioral models have been used by Resnick (1994) for education in the high
school, while some educational applications have been presented by Pagliarini et al.
(1996). On top of the purely educational achievement, our own experience with both
educational tools has revealed several technical and theoretical issues involved in the
design and development of educational software for artificial life and the complexity
sciences at an undergraduate or postgraduate level.

An educational software tool has to encompass both general- and special- purpose

functions. General-purpose functions are necessary to support education of the subject
addressed (here, it is behavioral modeling in both cases), independently of the target
audience. Special-purpose functions are necessary to respond to the particularities of the
audience (here, it is a class of graduate students in digital art). For example in VLab, the
vehicles behavior library and the simulator are reusable in any university-level class,
independently of discipline, whereas the brush models and the visual experimentation
protocols are specially designed for classes of art students. Of course, we expect to have a
different balance of general-versus special- purpose functions for different education
subjects and audiences. On the other hand, thoroughly special-purpose educational
software tools for particular audiences and a given subject, work sometimes better, but
they are rare. What is truly necessary, is a modular software methodology that will allow
customization of given tools for different audiences. We expect to be able to tackle this
issue after acquiring experience with particular educational software tools, adapted to
different user classes.

Another issue that has been already mentioned, is the need for involvement or
participation of the user to the system operation, to ensure high motivation for learning.
This can be done in a number of ways, such as an intrusive adventure game that addicts
the user or an artistic creation tool that attracts a user who happens to be an artist. A
methodology that invites participation in a particular educational tool is generally special-
purpose for a given subject and audience. Such an approach that seeks to design
participatory environments, has the special feature that teaching (teachers) and learning
(students) are separate, and what actually connects the two is the software tool. It is the
role of this tool to translate what the teacher says to what the student understands, and
vice versa.

Education and learning, through participation or otherwise, is not enough. What we
would like is to integrate a particular software-driven course to the general educational
policy that applies to the target audience. Integration means that students should be able
to use and reuse ideas and material in other contexts within their educational
environment. In our case, we have observed that students are systematically importing
images created with PainterAnts and VLab to other tools that they are using, namely
standard tools, such as Adobe Photoshop and Macromedia Director, or home tools
created in our laboratory. This is an indication that the particular educational tool has
gained recognition among our students as a valid image creation and processing tool.

The latter observation also unravels a difficult issue, that of the objectiveness of
education. What exactly do we expect students to learn ? Is learning something objective
or something profoundly personal ? While we think it is impossible to give a general and
definite answer to this question, we have fewer problems of such philosophical nature in
our case. This is because education of artists relies precisely on personal acquisition and
expression by each student, and only rarely on objective or systematic views, at least
when imagery is involved.

6 Conclusion

We have presented two educational software tools for teaching behavioral modeling to
graduate students of digital art. The systems, called PainterAnts and VLab, use ant

models or Braitenberg vehicle behaviors, respectively, and special graphical
representation. The Java-based environment on which both tools are programmed
provides many features for editing/processing the behavioral parameters and the
environment, as well as visualization, recording and saving functions. Our experience
with using the systems revealed that the artists show a high motivation for experimenting
with them, which is partly due to the fact that they tend to regard them as simple abstract
art tools that may produce interesting complex forms. Those forms are possible thanks to
the versatility of the underlying models. We have also identified several methodological
and theoretical issues that have to be addressed by large-scale educational software tools,
for instance by the future expanded version of PainterAnts and VLab. Those issues
include the balance that has to be found between general- and special- purpose functions
and the need for active participation of the user to the system operation so as to ensure
high motivation for learning. We also identify the problem of integration of a software-
driven educational process to the general educational environment and policy applied, as
well as the question of objectiveness of learning.

References

Braitenberg, V. (1984) Vehicles: Experiments in Synthetic Psychology, MIT Press,
Cambridge, MA.

Mondada, F., E. Franzi, and P. Ienne (1993) Mobile robot miniaturisation: A tool for
investigation in control algorithms. Proceedings Third International Symposium on
Experimental Robotics, Kyoto, Japan, October.

Pagliarini, L., H. Hautop Lund, O. Miglino, D. Parisi (1996) Artificial life: A new way to
build educational and therapeutic games, Artificial Life V, Proceedings of the Fifth
International Workshop on the Synthesis and Simulation of Living Systems, C.G.
Langton and K. Shimohara (Eds.), MIT Press, 1996.

Resnick, M. (1994) Turtles, termites and traffic jams: Explorations in massively parallel
microworlds, MIT Press/Bradford Books, Cambridge, MA.

Figure 1. Main interface of “Painter Ants”

Figure 2. Some snapshots taken with “Painter Ants”
(http://www.softlab.ece.ntua.gr/~brensham/PainterAnts/)

Figure 3. Main interface of “VLab”

Figure 4. Some snapshots taken with “VLab”

